Mathematical Model Development of an In-Line Robotic Complex Mechanical System
DOI:
https://doi.org/10.22213/2413-1172-2024-1-4-13Keywords:
mechanical system statics, new robot design, support and clamping robots, robotic devices, pipeline accidents, in-line inspection, industrial pipelinesAbstract
The article considers the problem of pipeline inspection of the Russian Federation, provides brief statistics on failures of various purpose industrial pipelines, presents the causes of accidents, analyzes technical solutions for pipeline timely inspection using in-line robotic devices, proposes a new design of an in-line robotic complex with the possibility of movement along complex geometry sections, a study presents the mathematical description development of an in-line robotic complex mechanical system for the subsequent creation of a motion control system for the device moving inside the pipeline. The research uses methods of analysis, synthesis, generalization of scientific experience in the field of automated in-tube devices, methods of theoretical mechanics, mechatronics and robotics. As a result, a mathematical description of a statically balanced mechanical system transition into the movement of the device is obtained when тяги расч с ;F F> relations of design parameters and its orientation on scalar values of wheel propeller reaction forces are obtained; thus, for a device weight of 12 kg, the orientation of the pipeline inclination angle of 0 degrees and the minimum clamping force of wheel propellers, the resulting reaction forces of the supports is 117.6 N. The obtained relations make it possible to determine the gravity distribution between the supporting legs with respect to design parameters of an automated device, as well as its orientation, while the wheel propeller reaction forces are the main component in determining the device traction force. In turn, this allows calculation of the required forces on the supporting legs to maintain the device spatial position with respect to the orientation angles ( ),,θ α to move the inspecting equipment of the device to the required diagnostic position relative to the pipeline and to select an electric motor. The results of the study can be used in the development of in-line robotic devices of the push-pull type.References
Обоснование выбора конструкции автономного робототехнического комплекса для диагностики трубопроводов сложной геометрии / Кучев Д. Н., Тонков Е. Ю., Поезжаева Е. В., Щелудяков А. М., Гумаров Э. Х., Белобородов Ф. С. // Строительные и дорожные машины. 2023. № 4. С. 47-52.
Miao X., Zhao H., Ma Y. (2022) Perception Modeling of In-Pipe Robot based on Machine Learning, 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), Malang, Indonesia, pp. 322-327.
Tang Z., Li Z., Ma S., Chen Y., Yang Y. (2021) Structure Design of Adaptive Pipeline Detection Robot,7th International Conference on Control, Automation and Robotics (ICCAR), Singapore, pp. 136-140.
Kazeminasab S., Akbari A., Jafari R., Banks M.K. (2021) Design, Characterization and Control of a Size Adaptable In-pipe Robot for Water Distribution Systems, 22nd IEEE International Conference on Industrial Technology (ICIT), Valencia, Spain, pp. 39-46.
Chen J., Zhang X., Cao X., Deng Z. (2019) Speed Control Characteristics and Energy Consumption Modeling for Composite Driving in-Pipe Robot,IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 2019, pp. 2583-2588.
Zheng T. (2022) Design of a Robot for Inspecting the Multishape Pipeline Systems. IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4608-4618.
Chen J., Cao X., Xu H., Zhang X. and Deng Z. (2020) Structure Design and Characteristic Analysis of Compound-Driven Unit for Pipeline Robot, 2020, 5th International Conference on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, pp. 353-358.
Zheng T., Wang X., Li H. (2022) Design of a Robot for Inspecting the Multishape Pipeline Systems. IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp. 4608-4618.
Wu K., Sang H., Xing Y., Lu Y. (2023) Design of wireless in-pipe inspection robot for image acquisition.Ind. Robot.-Int. J. Robot. Res. Appl., 50, pp. 145-161.
Yan H., Wang L., Li P., Wang Z., Yang X., Hou X. (2020) Research on Passing Ability and Climbing Performance of Pipeline Plugging Robots in Curved Pipelines. IEEE Access 2020, 8, 173666-173680.
Krishna G.A., Castillo U.A., Mishra A. (2022) Hereid and S. Kolathaya, "Linear Policies are Sufficient to Realize Robust Bipedal Walking on Challenging Terrains". In IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2047-2054, April 2022. DOI: 10.1109/LRA.2022.3143227
Савин С. И., Ворочаева Л. Ю. Восстановление вертикального равновесия шагающего робота как оптимизационная задача // Завалишинские чтения 19: сборник докладов конференции, Санкт-Петербург, 17-20 апреля 2019 года. Санкт-Петербург: Санкт-Петербургский государственный университет аэрокосмического приборостроения, 2019. С. 260-263.
Ворочаева Л. Ю., Савин С. И. Исследование установившихся периодических движений модулей ползающего робота при наличии внешних возмущений // Известия высших учебных заведений. Машиностроение. 2021. № 4(733). С. 18-29. DOI: 10.18698/0536-1044-2021-4-18-29
Virgala I., Kelemen M., Prada E. (2021) A snake robot for locomotion in a pipe using trapezium-like travelling wave. Mechanism and Machine Theory, 2021, vol. 158, p. 104221. DOI: 10.1016/j.mechmachtheory.2020.104221
Liu J., Wang Y., Li M. and R. Deng (2023) Joint Linkage and Motion System Design of Pipeline Detecting Snake Robot, 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, China, 2023, pp. 1545-1550. DOI: 10.1109/CCDC58219.2023.10327219
Venkateswaran S., Chablat D. (2019). A new inspection robot for pipelines with bends and junctions. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol. 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_4
Роботы для обработки трубопроводов малого диаметра в условиях агрессивных сред / И. О. Вторушин, В. В. Левщанов, С. А. Косарев [и др.] // Экстремальная робототехника. 2021. Т. 1, № 1. С. 330-346.
Рыльцева Ю. А., Орлов В. А. Системы визуального обследования и ремонта водопроводных и водоотводящих трубопроводов // Инженерный вестник Дона. 2020. № 4(64). С. 23.
Холоденко В. Б., Пахомов А. П. Внутритрубные диагностические роботизированные мобильные комплексы для труб различного диаметра // Инновации. Наука. Образование. 2022. № 52. С. 630-645.
Емельянова В. А., Соколова Е. В. Исследование риска аварий на объекте теплоснабжения и разработка комплекса мероприятий по повышению безопасности его функционирования // Проблемы анализа риска. 2020. Т. 17, № 3. С. 44-55.
Короткова Т. Г., Боженова К. С. Статистика и причины аварий на объектах нефтегазодобычи // Научные труды КубГТУ. 2019. № 1. С. 115-127.
Гибадулин П. Д., Уланов В. В. К вопросу о безопасности трубопроводного транспорта нефти и газа // Деловой журнал Neftegaz.RU. 2022. № 12(132). С. 16-20.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Дмитрий Николаевич Кучев
This work is licensed under a Creative Commons Attribution 4.0 International License.