Influence of Ultrasonic Testing Sensitivity Adjusting Method on Its Distribution over the Welded Joints Thickness of Building Structures

Authors

  • S. A. Becher Siberian Transport University
  • S. P. Shlyakhtenkov Siberian Transport University
  • E. V. Boyarkin Siberian Transport University
  • K. V. Kanifadin Siberian Transport University
  • K. V. Vlasov Siberian Transport University

DOI:

https://doi.org/10.22213/2413-1172-2024-1-81-88

Keywords:

probability of defect detection, depth sensitivity alignment, welded joints, ultrasonic inspection

Abstract

Welding is one of the most commonly used methods of manufacturing critical steel structures: beams and supports of buildings and bridges, frames and bodies of rolling stock. At the same time, the manufacturing quality of welded joints directly affects the strength and durability of structures. Currently used weld manufacturing technologies include ultrasonic testing in order to increase the reliability and failure-free operation of welded structures. The methods of ultrasound control are regulated by several standards: GOST R ISO 17640, STO-GC Transstroy-005-2007 and GOST R 55724, each of which defines different ways to adjust sensitivity. In these conditions, the issue of analyzing the ultrasound control results performed in accordance with various regulatory documents is relevant. A comparative analysis of the ultrasonic inspection sensitivity distribution over the weld thickness was carried out using two cylindrical control reflectors and tuning samples with reflectors of the lateral cylindrical hole and notch types. A sample with cylindrical reflectors with diameters of 2 mm and 3 mm was developed and manufactured to adjust the sensitivity of welded joint ultrasonic inspection by the DAC method according to ISO 17640 and two-zone control by direct and single-reflected beams according to STO-GC “Transstroy”-005-2007. The regularities of amplitude changes and detection coefficient of reflector signals located at different depths with different methods of sensitivity adjustment at a frequency of 5 MHz have been experimentally established. It has been experimentally shown that the use of cylindrical reflectors and notches for leveling sensitivity in the depth of the welded joint with a product thickness of up to 15 mm is equivalent with an unevenness of no more than 1.5 dB. To ensure uniform sensitivity with an uncertainty of no more than 2 dB, a two-parameter RF can be used, adjusted by three reflectors located at the boundaries of the control zone and at the midpoint.

Author Biographies

S. A. Becher, Siberian Transport University

DSc in Engineering, Associate Professor

S. P. Shlyakhtenkov, Siberian Transport University

Post-graduate

E. V. Boyarkin, Siberian Transport University

PhD in Engineering, Associate Professor

K. V. Kanifadin, Siberian Transport University

PhD in Engineering, Associate Professor

K. V. Vlasov, Siberian Transport University

PhD in Engineering, Associate Professor

References

Некоторые особенности применения АРД- (AVG)-диаграмм при ультразвуковом контроле сварных соединений / В. М. Ушаков, Д. М. Давыдов, В. В. Михалев, И. И. Муравская // Дефектоскопия. 2009. № 7. С. 3-7 = Ushakov V.M., Davydov D.M., Mikhalev V.V. (2009) [Some special features of using DGS (AVG) diagrams during ultrasonic testing of welded joints].Russian Journal of Nondestructive Testing, vol. 45, no. 7, pp. 445-448. DOI: 10.1134/S1061830909070018

Муравьева О. В., Муравьев В. В., Габбасова М. А. Вероятностно-статистические параметры сигнала при контроле цилиндрических объектов зеркально-теневым методом многократных отражений // Дефектоскопия. 2015. № 12. С. 11-19 = Murav'yeva O.V., Murav'yev V.V., Gabbasova M.A. (2015) [The probability and statistical parameters of a signal during the testing of cylindrical objects by the multiple-reflection echo-shadow method].Russian Journal of Nondestructive Testing, vol. 51, no. 12, pp. 720-726. DOI: 10.1134/s1061830915120074

Базулин А. Е., Базулин Е. Г., Исмаилов Г. М. Расчет АРД-диаграмм для систем ультразвукового контроля с применением фазированных решеток // Дефектоскопия. 2014. № 1. С. 37-46 = Bazulin A.E., Bazulin E.G., Ismailov G.M. (2014) [The calculation of DGS diagrams for ultrasound testing systems with the use of phased arrays].Russian Journal of Nondestructive Testing, vol. 50, no. 1, pp. 29-37. DOI: 10.1134/S1061830914010033

Ушаков В. М., Данилов В. Н. К вопросу оценки чувствительности ультразвукового контроля сварных соединений объектов энергетики // Дефектоскопия. 2019. № 10. С. 3-13 = Ushakov V.M., Danilov V.N. (2019) [To the question of assessing the sensitivity of ultrasonic testing of welded joints of energy industry objects].Russian Journal of Nondestructive Testing, vol. 55, no. 10, pp. 701-712. DOI: 10.1134/S0130308219100014

Муравьев В. В., Тапков К. А., Леньков С. В. К вопросу контроля остаточных напряжений в дифференцированно термоупрочненных рельсах // Дефектоскопия. 2018. № 10. С. 3-9 = Murav'yev V.V., Tapkov K.A., Len'kov S.V. (2018) [On the question of monitoring residual stresses in selectively heat-strengthened rails].Russian Journal of Nondestructive Testing, vol. 54, no 10, pp. 675-681. DOI 10.1134/S0130308218100019

Муравьев В. В., Волкова Л. В., Лапченко М. А. Ультразвуковой контроль остаточных напряжений в бандажах локомотивных колес при производстве // Дефектоскопия. 2015. № 5. С. 3-16 = Murav'yev V.V., Volkova L.V., Lapchenko M.A. (2015) [Ultrasonic in process control of residual stresses in locomotive tires].Russian Journal of Nondestructive Testing, vol. 51, no 5, pp. 259-271. DOI: 10.1134/S1061830915050046

Lucas C. Silva, Eduardo F. Simas Filho, Maria C.S. Albuquerque, Ivan C. Silva, Claudia T.T. Farias (2020) Segmented analysis of time-of-flight diffraction ultrasound for flaw detection in welded steel plates using extreme learning machines. Ultrasonics, vol. 102.

Пилюгин С. О., Лунин В. П. Определение вероятности обнаружения дефектов в сварных швах при ультразвуковом контроле фазированной решеткой // Дефектоскопия. 2016. № 6. С. 35-41 = Pilyugin S.O., Lunin V.P. (2016) [Determining the probability of detecting flaws in weld joints by phased-array ultrasonic testing].Russian Journal of Nondestructive Testing, vol. 52, no. 6, pp. 332-338. DOI: 10.1134/S1061830916060085

Qiang Wanga, Kai Zhua, Linlin Wua, Haihang Lia, Xiaomeng Xua, Sifan Gonga (2020) Performance evaluation of austenitic stainless steel weld by ultrasonic phased array inspection based on probability of detection.Russian Journal of Nondestructive Testing, vol. 56, pp. 566-573. DOI: 10.1134/s1061830920070086

Yan Y., Liu D., Gao B., Tian G.Y., Cai Z.C. (2020) A deep learning-based ultrasonic pattern recognition method for inspecting girth weld cracking of gas pipeline. IEEE Sensors Journal, vol. 20, no. 14, pp. 7997-8006. DOI: 10.1109/JSEN.2020.2982680

Xinpei Liu, Brian Uy., Abhijit Mukherjee (2019) Transmission of ultrasonic guided wave for damage detection in welded steel plate structures. Steel and Composite Structures, vol. 33, no. 3, pp. 445-461. DOI: 10.12989/scs.2019.33.3.445

Nan Ding (2020) Multi-angle phased array ultrasonic line-scan method for steel reinforced polyethylene electro-fusion welded joint. IOP Conf. Ser.: Proc. Sci. Eng., vol. 677. DOI: 10.1088/1757-899X/677/2/022049

Zhe Wang, Hai-Ming Pu, Yi-Hua Kang, Bao-Qiang Wang (2020) Nondestructive testing method and application for internal defect of metal balls. Nondestructive Testing and Evaluation, vol. 35, no. 2, pp. 177-189. DOI: 10.1080/10589759.2019.1652296

Ravindra Kumar P., Vijay Kumar G., Naga Murali K., Kishore R.B.S.S., Xiaoliang Jin. (2020) Experimental Investigation of Ultrasonic Flaw Defects in Weld Clad Materials Using NDT Technique: Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering, p. 1205. DOI: 10.1007/978-981-15-1201-8_111

Qiuyue F., Guocheng X., Xiaopeng G. (2020) Ultrasonic Nondestructive Evaluation of Porosity Size and Location of Spot Welding Based on Wavelet Packet Analysis. J NondestructEval, vol. 39, no. 7. DOI: 10.1007/s10921-019-0650-1

Bhat M.R., Ragupathy V.D. (2019) Characterisation of Friction Stir Weld Discontinuities by Non-destructive Evaluation. Trans Indian Inst Met, vol. 72, pp. 2971-2979. DOI: 10.1007/s12666-019-01813-x

Nadimpalli V.K., Karthik G., Janakiram G., Nagy P.B. (2020) Monitoring and repair of defects in ultrasonic additive manufacturing.Int J Adv Manuf Technol, vol. 108, pp. 1793-1810. DOI: 10.1007/s00170-020-05457-w

Deepak J.R., Bupesh Raja V.K., Srikanth D., Surendran H., Nickolas M.M. (2021) Non-destructive testing (NDT) techniques for low carbon steel welded joints: A review and experimental study: Materials Today: Proc., vol. 44, no. 5, pp. 3732-3737. DOI: 10.1016/j.matpr.2020.11.578

Published

08.04.2024

How to Cite

Becher С. А., Shlyakhtenkov С. П., Boyarkin Е. В., Kanifadin К. В., & Vlasov К. В. (2024). Influence of Ultrasonic Testing Sensitivity Adjusting Method on Its Distribution over the Welded Joints Thickness of Building Structures. Vestnik IzhGTU Imeni M.T. Kalashnikova, 27(1), 81–88. https://doi.org/10.22213/2413-1172-2024-1-81-88

Issue

Section

Articles