Simulation Modeling of OLSR Routing Protocol Performance in Video Data Transmission from Unmanned Area Vehicle Using Various Mobility Models
DOI:
https://doi.org/10.22213/2413-1172-2024-1-113-120Keywords:
OLSR, PDR, Wi-Fi, routing, NS-3, uavAbstract
The article presents the results of simulation modeling of real-time data transmission processes. The main objective of the article was to evaluate the performance of the Optimized Link-State Routing (OLSR) routing protocol when transmitting video data from an Unmanned Aerial Vehicle (UAV) to a ground station through a relay node using various mobility models in the NS-3 network simulator. The scenario involved a flying source node transmitting real-time video data to a destination node while moving away from it at a specified speed. The study focused on the moment of switching from direct transmission (source node to destination node) to transmission through a relay node (source node to relay node to destination node), with the primary metric being the Packet Delivery Ratio (PDR). Based on the analysis results, conclusions were drawn regarding the expected performance of the OLSR routing protocol during real mission execution using a relay node to extend the network coverage between the UAV source node and the ground station destination node. Recommendations were also provided for improving PDR metrics, including the use of a method for retransmitting lost fragments at the application level called MS-AL-ARQ.References
Taha M., Ali A.(2023) Smart algorithm in wireless networks for video streaming based on adaptive quantization. Concurrency and Computation: Practice and Experience, vol. 35, no. 9, p. e7633.
Ray H.S. (2023) A cross-layer fragmentation approach to video streaming over mobile ad-hoc network using BATMAN-Adv. Multimedia Tools and Applications, pp. 1-21.
Cheklat L. (2021) Chearp: Chord-based hierarchical energy-aware routing protocol for wireless sensor networks.Computer Science and Information Systems, vol. 18, no. 3, pp. 813-834.
Myjak M.V.K., Ranganathan P. (2022) Unmanned aerial system (UAS) swarm design, flight patterns, communication type, applications, and recommendations. IEEE International Conference on Electro Information Technology (eIT). IEEE, pp. 586-594.
Gunji H. (2022) A Method for Constructing Collision Avoidance Route for Multiple UAVs Using OLSR-Based Link Hierarchization: Proc. of the 10th International Conference on Computer and Communications Management, pp. 169-174.
Haas Z.J. (2002) A hybrid framework for routing in ad hoc networks. Ad hoc networking, pp. 221-253.
Cheng D. (2023). Hybrid routing transformer for zero-shot learning, Pattern Recognition, vol. 137, p. 109270.
Shaban A.M., Kurnaz S., Shantaf A.M. (2020) Evaluation DSDV, AODV and OLSR routing protocols in real live by using SUMO with NS3 simulation in VANET.International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE, pp. 1-5.
Clausen T. (1994) Optimized link state routing protocol (OLSR). 2003. C.E. Perkins, P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM computer communication review, ACM, vol. 24, no. 4, pp. 234-244.
Sehrawat P., Chawla M. (2023) Interpretation and investigations of topology based routing protocols applied in dynamic system of VANET. Wireless Personal Communications, vol. 128, no. 3, pp. 2259-2285.
Wheeb A. H.(2023) Performance Evaluation of Standard and Modified OLSR Protocols for Uncoordinated UAV Ad-Hoc Networks in Search and Rescue Environments. Electronics, vol. 12, no. 6, p. 1334.
Маршрутизация в беспроводных мобильных Adhoc-сетях / В. М. Винокуров [и др.] // Доклады Томского государственного университета систем управления и радиоэлектроники. 2010. № 2-1. С. 22.
Brown T. (2004) A d-hoc ground network (augnet). AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, pp. 6321.
Kout A. (2023) A Hybrid Optimization Solution for UAV Network Routing. Engineering, Technology & Applied Science Research, vol. 13, no. 2, pp. 10270-10278.
Cheng C.M. (2007) Maximizing throughput of UAV-relaying networks with the load-carry-and-deliver paradigm. IEEE Wireless Communications and Networking Conference, pp. 4417-4424.
Sun Z. (2011) Border Sense: Border patrol through advanced wireless sensor networks. Ad Hoc Networks, vol. 9, no. 3, pp. 468-477.
Разработка метода принятия решений об эффективных маршрутах передачи информации в гетерогенной среде приемников-передатчиков / Г. А. Благодатский, А. Н. Копысов, В. В. Хворенков, А. С. Батурин // Молодежь и инновации: развитие научно-инновационного потенциала региона: сб. материалов Второго республиканского форума, Ижевск, 28-29 окт. 2020 г. Ижевск: Изд-во ИжГТУ имени М. Т. Калашникова, 2021. С. 11-20.
Cui W., Yang Y., Di L. (2023) Modeling and optimization for static-dynamic routing of a vehicle with additive manufacturing equipment.International Journal of Production Economics, vol. 257, p. 108756.
Zhou R. (2023) Topology Duration Optimization for UAV Swarm Network under the System Performance Constraint. Applied Sciences, vol. 13, no. 9, p. 5602.
Ouyang Q. (2023) Formation control of unmanned aerial vehicle swarms: A comprehensive review. Asian Journal of Control, vol. 25, no. 1, pp. 570-593.
Lopez M.A. (2021) Towards secure wireless mesh networks for uav swarm connectivity: Current threats, research, and opportunities: 17th International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2021, pp. 319-326.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Роман Эдуардович Шибанов, Ирина Алексеевна Кайсина, Анатолий Иванович Нистюк, Альберт Винерович Абилов
This work is licensed under a Creative Commons Attribution 4.0 International License.