Structural and Kinematic Features of Three-Link Centroid Mechanisms and Synthesis of Non-Circular Gears of a Planetary-Rotor Hydraulic Machine

Authors

  • G. Y. Volkov Kurgan State University
  • Y. V. Alekseeva Kurgan Industrial College

DOI:

https://doi.org/10.22213/2413-1172-2024-4-22-30

Keywords:

the Aronhold-Kennedy theorem, centroidal mechanism, non-circular gears, planetary gears, Planetary-Rotor Hydraulic Machine

Abstract

The development of modern technologies opens up new possibilities for the production and use of centroid mechanisms, including planetary-rotary hydraulic machines. The problem of profiling non-circular gears of such hydraulic machines has not yet received its final solution. Previously developed methods either did not provide an acceptable tooth shape or required increased clearances in the gearings. In this article, the problem of the mentioned above hydraulic machine design is solved on the basis of analysis of thethree-link centroid mechanismstructure general principles. Features of centroid mechanism design having round and non-circular gears are studied. The importance of the Aronhold-Kennedy and Willis theorems in the geometric synthesis of such mechanisms is emphasized. In relation to the synthesis of non-circular gears for a planetary mechanism with planetary gears, it was established that in this mechanism the transition motion of the satellites cannot be carried out at a constant angular velocity. An in-depth analysis of the issue made it possible to develop a more accurate method for designing the working mechanism of planetary-rotary hydraulic machines. This method includes thefollowing stages: choosing the parameters of the designed working mechanism prototype of the hydraulic machine - the original, calculated round-link planetary mechanism; choosing the calculated trajectories of the satellite center in coordinate systems connected with each of the central gears, which are described by a common cyclic function; calculating the angular positions of the satellite corresponding to various phases of its motion; calculating the correction for the satellite radial position, which specifies the profile of the epicycle teeth; graphical construction of non-circular gearprofiles as envelopes of the generating satellite. The new method ensures the absence of tooth interference and favorable conditions for transmitting motion in gearings. The method is quite simple and can be used by a wide range of calculation engineers based on national software systems.

Author Biographies

G. Y. Volkov, Kurgan State University

DSc in Engineering, Associate Professor

Y. V. Alekseeva, Kurgan Industrial College

преподаватель

References

Волков Г. Ю., Алексеева Ю. В. Особенности задачи синтеза некруглых зубчатых колес планетарных механизмов с плавающими сателлитами // Известия высших учебных заведений. Машиностроение. 2024, № 9 (774). С. 10-18.

Падалко А. П., Падалко Н. А. Зубчатая передача с некруглым колесом // Теория механизмов и машин. 2013. Т. 11, № 2. С. 89-96.

Волков Г. Ю., Фадюшин Д. В., Голованев В. А. Профилирование некруглых зубчатых колес для передач с фиксированным межосевым расстоянием по методу виртуальной обкатки // Сборка в машиностроении, приборостроении. 2022. Т. 23, № 10. С. 452-458. DOI: 10.36652/0202-3350-2022-23-10-452-458

Jian Gang Li, Xu Tang Wu, Shi Min Mao (2007) Numerical computing method of noncircular gear tooth profiles generated by shaper cutters. The International Journal of Advanced Manufacturing Technology, vol. 33, is. 11-12, pp. 1098-1105.

Mundo D., Danieli G.A. (2004) Use of the Non-Circular Gear in Pressing Machine Driving Systems. IASME Transactions I, no. 1, pp. 7-11.

Shinn-Liang, Chung-BiauTsay, Long-Iong Wu (1996) Mathematical model and undercutting analysis of elliptical gears generated by rack cutters. Mech. Math. Theory, vol. 31, no. 7, pp. 879-890.

Киреев С. О., Падалко Н. А. Численное определение координат контура эвольвентного зуба. Расчет параметров зубьев для изготовления овальных шестерен // Известия вузов. Северо-Кавказский регион. Технические науки. 2000. № 3. С. 34-36.

Литвин Ф. Л. Теория зубчатых зацеплений. М. : Наука, 1968. 584 с.

Диментберг Ф. М. Теория пространственных шарнирных механизмов. М. : Наука, 1982. 335 с.

Kumar Mallik, Ghosh A., Dittirich G. (1994) Kinematic Analysis and Synthesis of Mechanisms; CRC: Boca Raton, FL, USA, 1994.

Артоболевский И. И., Левитский Н. И., Черкудинов С. А. Синтез плоских механизмов. М. : Физматгиз, 1959. 1084 с.

Gleb Volkov, Denis Fadyushin, Maksim Vedernikov (2023) Geometric calculation of non-circular gear segments of the planetary mechanism in rotary hydraulic machines: E3S Web of Conferences 389, 01017 (2023). Available at: https://doi.org/10.1051/e3sconf/202338901017 (accessed: 20.06.2024).

Волков Г. Ю., Смирнов В. В., Горбунов М. В. Методика геометрического расчета и профилирования зубчатых венцов планетарной роторной гидромашины // Справочник. Инженерный журнал. 2018. № 9 (258). С. 32-37.

Волков Г. Ю., Курасов Д. А., Горбунов М. В. Инженерный метод геометрического синтеза планетарного механизма роторной гидромашины // Вестник машиностроения. 2017. № 10. С. 10-15.

Ан И-Кан. Синтез центроид планетарной передачи с некруглыми колесами // Механика и машиностроение : сборник трудов ТПУ. Томск : ТПУ, 2000. С. 288-290.

Ан И-Кан. Аппроксимация профилей зубьев некруглых колес с применением ПК // Справочник. Инженерный журнал. 2000. № 11. С. 39-41.

Ан И-Кан, Беляев А. Е. Синтез планетарных передач применительно к роторным гидромашинам. Новоуральск : НПИ, 2001. 91 с.

Dawei Li, Yongping Liu, Jun Gong, Tongcheng Wang (2021) Design of a Noncircular Planetary Gear Mechanism for Hydraulic Motor. Mathematical Problems in Engineering, 2021, vol. 2021, pp 1-9.

Biao Zhang, Shikuan Song, Chenghu Jing and Dong Xiang (2021) Displacement prediction and optimization of a non-circular planetary gear hydraulic motor. Advances in Mechanical Engineering, vol. 13, no. 11, pp. 1-13.

Ding H. (2012) Application of non-circular planetary Gear mechanism in the Gear Pump. Adv Mater Res, 591-593, 2139-2142.

Chao Lin, Xiguang Xia and Peilu Li (2018) Geometric design and kinematics analysis of coplanar double internal meshing non-circular planetary gear train. Advances in Mechanical Engineering, vol. 10, no. 12, pp. 1-12.

Mundo D. (2006) Geometric design of a planetary gear train with non-circular gears. Mechanism and Machine Theory, no. 41, pp. 456-472.

Published

27.12.2024

How to Cite

Volkov Г. Ю., & Alekseeva Ю. В. (2024). Structural and Kinematic Features of Three-Link Centroid Mechanisms and Synthesis of Non-Circular Gears of a Planetary-Rotor Hydraulic Machine. Vestnik IzhGTU Imeni M.T. Kalashnikova, 27(4), 22–30. https://doi.org/10.22213/2413-1172-2024-4-22-30

Issue

Section

Articles