Computer Bending Strength Analysis of Straight and Barrel Teeth under Skew Conditions
DOI:
https://doi.org/10.22213/2413-1172-2025-1-4-14Keywords:
ANSYS Mechanical APDL, computer simulation, stress distribution diagrams, bending stresses, skew angle, barrel-shaped tooth modification, spur gearingAbstract
The paper presents the results of computer simulation to research the bending stress distribution law at the root of straight and barrel-shaped teeth of spur gearings under conditions of misalignment of the gear axes. It is known that the greatest effect on the load capacity and durability of spur gearings is exerted by the irregular load distribution along the contact lines due to the distortion of the tooth surfaces in meshing, leading to contact area length shortening and edge contact of teeth. This results in a multifold transmission life reduction in terms of contact or bending strength. Spur gears with longitudinal (barrel-shaped) tooth modification allow increasing the durability of spur gears when operating in conditions of gear axis misalignment. In this work, a comparative Finite Element Analysis of the stress-strain state of a straight tooth and a barrel-shaped tooth was carried out underline load at the tooth top and a variable skew angle from 0' to 8'. Computer simulations were performed at ANSYS Mechanical APDL. The line load distribution laws along the longitudinal tooth coordinate were obtained analytically for various skew angles based on the three-dimensional contact problem solution, taking into account tooth volume and contact deformations, as well as edge effects. As a result of computer simulation, figures of the tensile stress distribution in the tooth roots were obtained and a reduction in stresses by 15% was determined using a barrel-shaped modification. The proposed method of strength analysis allows to justify the choice of tooth barrel-shaped longitudinal modification even at the stage of gearing synthesis providing bending stress reduction in the gearing during its operation in conditions of skew of a given degree.References
Лопатин Б. А., Плотникова С. В., Лопатин Д. Б. Проектирование зубчатых передач из эвольвентно-конических колес // Вестник ИжГТУ имени М. Т. Калашникова. 2024. Т. 27, № 3. С. 49-61. DOI: 10.22213/2413-1172-2024-3-49-61
Strungar Е.М., Staroverov О.А., Lynegova Е.М. (2022) Сomprehensive evaluation of fatigue damage accumulation and failure of specimens with operational stress concentrators. Diagnostics, Resource and Mechanics of materials and structures, iss. 4, pp. 37-49. DOI: 10.17804/2410-9908.2022.4.037-049
Syzrantseva K.V., Syzrantsev V.N., Kolbasin D.S. (2019) Comparative estimation of the failure probability of cylindrical arc and helical gears by tooth bending endurance: AIP Conference Proceedings, vol. 2176, art. 020010. DOI: 10.1063/1.5135122
Cherniavsky A.O., Cherniavsky O.F. (2020) A change in the deformation mechanism with a monotonous change of the load parameter.International Journal of Pressure Vessels and Piping, vol. 188, art. 104192. DOI: 10.1016/j.ijpvp.2020.104192
Сызранцева К. В., Зонова Н. В., Билянская И. В. Компьютерное моделирование и оптимизация конструкции ловителя-сигнализатора для повышения его надежности при геофизических исследованиях скважин // Оборудование и технологии для нефтегазового комплекса. 2023. № 4 (136). DOI: 10.33285/1999-6934-2023-4(136)-5-11
Voutchkov I., Keane A., Shahpar Sh., Bates R. (2018) Meshing using interpolative mapping and control point optimization. Journal of Computational Design and Engineering, vol. 5, iss. 3, pp. 305-318. DOI: 10.1016/j.jcde.2017.12.003
Crawford J. (1999) Evaluating Mesh Density. Ansys Solutions, vol. 1, no. 2, pp. 12-16.
Syzrantseva K., Kuskov K., Gonchar N., Dubrovko D. (2023) Updating the statistical strength analysis method for the shut-off valve body in random loading conditions: Proceedings of the 9th International Conference on Industrial Engineering, pp. 61-70. DOI: 10.1007/978-3-031-38126-3_7
Расчет напряженно-деформированного состояния корпуса шарового крана в конечно-элементном комплексе ANSYS / А. А. Пазяк, М. А. Пазяк, Н. А. Шулинина, П. Д. Князева // Научно-технический вестник Поволжья. 2023. № 10. С. 42-45.
Евдокимов А. П. Расчетно-экспериментальная оценка динамической нагруженности привода компрессора буровой установки // Оборудование и технологии для нефтегазового комплекса. 2023. № 4. С. 12-15. DOI: 10.33285/1999-6934-2023-4(136)-12-15
Alshoaibi A.M., Fageehi Ya.A. (2021) 3D modelling of fatigue crack growth and life predictions using ANSYS. Ain Shams Engineering Journal, vol. 13, iss. 4, art. 101636. DOI : 10.1016/j.asej.2021.11.005
Giorgetti F., Lombroni R., Belardi V.G., Calabro G., Dalla Palma M., Fanelli P., Fulici M., Ramogida G., Vivio F. (2022) Vertical displacement events analysis using MAXFEA code in combination with ANSYS APDL in the final design stage of the DTT vacuum vessel. Fusion Engineering and Design, vol. 184, pp. 9-10. DOI: 10.1016/j.fusengdes.2022.113273
Thompson M., Thompson J. (2017) АNSYS Mechanical APDL for Finite Element Analysis. Oxford : Butterworth-Heinemann, p. 466. ISBN 9780128129814
Kansara P., Indrodia A., Diwan M., Raval J., Yadav N., Oza A. d., Kumar M., Shinde S.M., Parvez A., Makwana M. (2022) Optimization of gate valve structure based on strength parameters using finite element analysis.International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 17 (8), pp. 1-9. DOI: 10.1007/s12008-022-01052-3
He X., Zhang C., Tian D. (2019) Strength analysis and structure optimization of gate valve body based on finite element software. E3S Web of Conferences, vol. 136, Art. 03019. DOI: 10.1051/e3sconf/201913603019
Pedrero J., Pleguezuelos M., Sanchez M. (2020) Analytical Simulation of the Tooth Contact of Spur Gears. New Approaches to Gear Design and Production, pp. 115-131. DOI: 10.1007/978-3-030-34945-5_4
Syzrantseva K.V., Syzrantsev V.N., Babichev D.T. (2020) Comparative Analysis of Stress-Strain Condition of Cylindrical Gears Arc Teeth and Spurs. Proceedings of the 5th international conference on industrial engineering (ICIE 2019), pp. 101-108. DOI: 10.1007/978-3-030-22041-9_12
Babichev D.T., Babichev D.A., Lebedev S.Y. (2018) Calculation of tooth profile radiuses of curvature into line of contact parameters. IOP Conf. Series: Materials Science and Engineering, vol. 393, pp. 681-692. DOI: 10.1088/1757-899X/393/1/012051
Грубка Р. М. Конструктивные способы повышения эксплуатационных показателей цилиндрических зубчатых передач // Прогрессивные технологии и системы машиностроения. 2019. № 1. С. 17-22.
Грубка Р. М., Михайлов А. Н., Петряева И. А. Классификация видов продольной модификации зубьев цилиндрических зубчатых колес в зависимости от функционального назначения // Современные технологии и автоматизация в машиностроении. 2019. № 18. С. 187-190.
Сызранцев В. Н., Сызранцева К. В. Цилиндрические передачи с арочными зубьями: геометрия, прочность, надежность : монография. Тюмень : ТИУ, 2021. 170 с. ISBN 978-5-9961-2378-0
Wen Q., Du Q., Zhai X. (2020) Analytical calculation of the tooth surface contact stress of spur gear pairs with misalignment errors in multiple degrees of freedom. Mechanism and Machine Theory, vol. 149, Art. 103823. DOI: 10.1016/j.mechmachtheory.2020.103823
Нахатакян Ф. Г. Повышение нагрузочной способности зубчатой передачи в условиях перекоса снижением контактных напряжений с помощью продольной модификации зубьев // Вестник машиностроения. 2022. № 12. С. 13-16. DOI: 10.36652/0042-4633-2021-12-13-16
Нахатакян Ф. Г., Нахатакян Д. Ф. Оценка величины допускаемого угла перекоса в зубчатом зацеплении // Проблемы машиностроения и надежности машин. 2022. № 1. С. 45-49. DOI: 10.31857/S0235711922030099
Короткин В. И., Колосова Е. М., Онишков Н. П. Прогнозирование контактной выносливости упрочненных зубьев и нагрузочной способности эвольвентных зубчатых передач по критерию предельного состояния материала // Вестник машиностроения. 2021. № 12. С. 31-35. DOI: 10.36652/0042-4633-2021-12-35-37
Lebedev S.Yu., Syzrantsev V.N. (2023) Probability estimate of the strength reliability of toothed wheel gear. Procedia Structural Integrity, vol. 50, pp. 155-162. DOI: 10.1016/j.prostr.2023.10.036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ксения Владимировна Сызранцева, Иван Сергеевич Сердюк, Данил Александрович Трубкин

This work is licensed under a Creative Commons Attribution 4.0 International License.