Spectrally-Matched Led Illumination System Modeling for Visual Inspection of Sealing Integrity in Small Satellite Enclosures
DOI:
https://doi.org/10.22213/2413-1172-2025-3-4-14Keywords:
sealing quality control, quality management of assembly processes, small spacecraft assembly, visual inspection, cubeSat, machine vision, spectral channels, LED light sourceAbstract
A numerical model has been developed for a three-channel ring-shaped LED lighting device designed for a visual automated inspection system for sealing joints on small CubeSat 1U and 2U spacecraft using a machine vision camera. The model assumes the periodic operation of three different spectral channels - ultraviolet, visible green, and near-infrared ranges of the spectral distribution of light and is formulated as a two-level variational problem linking the discrete arrangement of LED light sources with a continuous set of their light characteristics, subject to constraints on uniformity and sufficiency of illumination in the visual control zone. The model is presented as a two-level variational optimization problem linking the binary topology of emitter placement and continuous levels of their light brightness with restrictions on the uniformity of illumination and thermal load; The numerical implementation of the model is performed by approximating point emitters by the shape of a Lambertian object and discretizing the controlled area with a diameter of 40 mm with a step of 0.5 mm, three rings of 36 sources at radii of 70, 85, and 100 mm, and a working height of 55 mm. Simulation results meet the target radiometric and photometric specifications: mean irradiance for the ultraviolet channel of 5.1 mW/cm²; mean illuminance for the green channel of 10.3 klx; and mean irradiance for the near-infrared channel of 30.4 mW/cm². The composite-field uniformity index equals 0.87, and, relative to a regular equal-angular arrangement, the variance of the composite field is reduced by 34 %. These findings substantiate the suitability of the model for the design and optimization of spectrally adaptive, three-ring LED illuminators-spanning source placement topology, spectral composition, and drive levels-required by machine-vision systems for visual inspection during modular assembly and sealing of small spacecraft enclosures.References
Ванг Л., Ву Х., Матвеев И. Метод стохастического градиента с шагом Барзилай - Борвейна для безусловной нелинейной оптимизации // Известия Российской академии наук. Теория и системы управления. 2021. № 1. С. 79-90. DOI: 10.31857/S0002338821010108
Расчет оптических элементов при протяженном источнике излучения / Е. В. Бызов, Л. Л. Досколович, С. В. Кравченко, М. А. Моисеев, Н. Л. Казанский // Компьютерная оптика. 2023. Т. 47, № 1. С. 40-47.
Юлаева Ю. В., Хомяков А. Ю., Туев В. И. Декомпозиционная световая математическая модель светодиодного излучающего элемента // Научный вестник НГТУ. 2020. № 4 (80). С. 177-197. DOI: 10.17212/1814-1196-2020-4-177-197
Затонский А. В., Варламова С. А., Федосеева К. А. Улучшение компьютерного распознавания параметров пены калийных флотомашин за счет учета антибликов пузырей // Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника. 2022. Т. 22, № 3. С. 57-67.
Васин П. В., Баринова Е. В. Методика определения погрешности стенда измерения масс-центровочных и инерционных характеристик наноспутников с помощью эталонных объектов // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2022. Т. 21, № 3. С. 7-22.
Кузьменко В. П. Модель спектрального анализа для определения температуры p-n-перехода в бытовых светодиодах на основе нитрида галлия // Фундаментальные и прикладные проблемы техники и технологии. 2025. № 2 (370). С. 135-147. DOI: 10.33979/2073-7408-2025-370-2-135-147
Jeon D., Park J., Ryu J., Choi H. (2024) Design of an Internal Focusing Tube Lens for Optical Inspection Systems. Applied Sciences, vol. 14, no. 4. DOI: 10.3390/app14041518
Koehler S., Indahl B., Szewczyk D., Vorobiev D., Fleming B. (2023) Development and fabrication of a custom vacuum bakeout system for the Far-UV CubeSat SPRITE: Proc. SPIE 12678, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts IX, vol. 12678, pp. 1267819. DOI: 10.1117/12.2676554
De R. [et al.] (2022) Enabling science with CubeSats - trends and prospects. IEEE Journal on Miniaturization for Air and Space Systems, vol. 3, pp. 221-231. DOI: 10.1109/JMASS.2022.3209897
Veljovic M.J. [et al.] (2020) Antennas for CubeSat communication: EPFL Thesis [Electronic resource]. Available at: https://doi.org/10.5075/EPFL-THESIS-7489 (accessed: 15.05.2025).
Abbasy M. [et al.] (2023) System design and review of a very low-cost 6U CubeSat platform based on Pluto experience. Advances in Astronautics Science and Technology, vol. 6, pp. 1-18. DOI: 10.1007/s42423-023-00137-9
Палабугин М. В., Калюжный Д. Г. Современное состояние лазерных технологий в области нанесения функциональных покрытий // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 1. С. 13-22. DOI: 10.22213/2413-1172-2023-1-13-22
Welle R. [et al.] (2020) Overview of CubeSat technology: Handbook of Small Satellites [Electronic resource]. Available at: https://doi.org/10.1007/978-3-030-20707-6_3-1 (accessed: 15.05.2025).
Jo H.J. [et al.] (2022) Analysis of a CubeSat magnetic cleanliness for the space science mission. Journal of Space Technology and Applications [Electronic resource]. Available at: https://doi.org/10.52912/jsta.2022.2.1.41 (accessed: 15.05.2025).
Bouwmeester J. [et al.] (2022) Improving CubeSat reliability: Subsystem redundancy or improved testing? Reliability Engineering and System Safety, vol. 220, Article 108288 [Electronic resource]. Available at: https://doi.org/10.1016/j.ress.2021.108288 (accessed: 15.05.2025).
Разработка технологии 3D-печати корпусных деталей МКА НК / Д. В. Антипов, М. А. Михеев, В. И. Панин, В. В. Жуков // Известия Самарского научного центра Российской академии наук. 2023. Т. 25, № 4 (114). С. 110-113. DOI: 10.37313/1990-5378-2023-25-4-110-113
Девятов Д. А., Чернова А. А. Оценка возможности автоматизации формирования технологических процессов в мелкосерийном производстве // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 3. С. 67-74. DOI: 10.22213/2413-1172-2023-3-67-74
Bollattino S. [et al.] (2024) Fast development and validation of a sensing suite system for CubeSats. Acta Astronautica [Electronic resource]. Available at: https://doi.org/10.1016/j.actaastro.2024.07.005 (accessed: 14.04.2025).
Szewczyk T. [et al.] (2023) Standardization concepts for CubeSat applications: 2023 European Data Handling & Data Processing Conf. (EDHPC), pp. 1-5 [Electronic resource]. Available at: https://doi.org/10.23919/EDHPC59100.2023.10396512 (accessed: 14.04.2025).
Stesina F. [et al.] Investigation of a CubeSat in orbit anomaly through verification on ground. Aerospace [Electronic resource]. Available at: https://doi.org/10.3390/aerospace7040038 (accessed: 14.04.2025).
Latachi I. [et al.] (2024) A systematic approach for CubeSat mission risk analysis: 2024 Int. Conf. on Global Aeronautical Engineering and Satellite Technology (GAST), pp. 1-6 [Electronic resource]. Available at: https://doi.org/10.1109/GAST60528.2024.10520794 (accessed: 09.04.2025).
Chacon S. [et al.] (2022) Modelling CubeSat structure for thermal analysis: 2022 IEEE XXIX Int. Conf. on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1-4 [Electronic resource]. Available at: https://doi.org/10.1109/INTERCON55795.2022.9870086 (accessed: 09.04.2025).
Doyle M. [et al.] (2021) Mission testing for improved reliability of CubeSats: Proc. of SPIE, vol. 11852, pp. 118526M-1-118526M-20 [Electronic resource]. Available at: https://doi.org/10.1117/12.2600305 (accessed: 09.04.2025).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Владимир Павлович Кузьменко, Сергей Валентинович Солёный

This work is licensed under a Creative Commons Attribution 4.0 International License.