Spectrally-Matched Led Illumination System Modeling for Visual Inspection of Sealing Integrity in Small Satellite Enclosures

Authors

  • V. P. Kuzmenko Saint Petersburg State University of Aerospace Instrumentation
  • S. V. Soleniy Saint Petersburg State University of Aerospace Instrumentation

DOI:

https://doi.org/10.22213/2413-1172-2025-3-4-14

Keywords:

sealing quality control, quality management of assembly processes, small spacecraft assembly, visual inspection, cubeSat, machine vision, spectral channels, LED light source

Abstract

A numerical model has been developed for a three-channel ring-shaped LED lighting device designed for a visual automated inspection system for sealing joints on small CubeSat 1U and 2U spacecraft using a machine vision camera. The model assumes the periodic operation of three different spectral channels - ultraviolet, visible green, and near-infrared ranges of the spectral distribution of light and is formulated as a two-level variational problem linking the discrete arrangement of LED light sources with a continuous set of their light characteristics, subject to constraints on uniformity and sufficiency of illumination in the visual control zone. The model is presented as a two-level variational optimization problem linking the binary topology of emitter placement and continuous levels of their light brightness with restrictions on the uniformity of illumination and thermal load; The numerical implementation of the model is performed by approximating point emitters by the shape of a Lambertian object and discretizing the controlled area with a diameter of 40 mm with a step of 0.5 mm, three rings of 36 sources at radii of 70, 85, and 100 mm, and a working height of 55 mm. Simulation results meet the target radiometric and photometric specifications: mean irradiance for the ultraviolet channel of 5.1 mW/cm²; mean illuminance for the green channel of 10.3 klx; and mean irradiance for the near-infrared channel of 30.4 mW/cm². The composite-field uniformity index equals 0.87, and, relative to a regular equal-angular arrangement, the variance of the composite field is reduced by 34 %. These findings substantiate the suitability of the model for the design and optimization of spectrally adaptive, three-ring LED illuminators-spanning source placement topology, spectral composition, and drive levels-required by machine-vision systems for visual inspection during modular assembly and sealing of small spacecraft enclosures.

Author Biographies

V. P. Kuzmenko, Saint Petersburg State University of Aerospace Instrumentation

PhD in Engineering, Associate Professor

S. V. Soleniy, Saint Petersburg State University of Aerospace Instrumentation

PhD in Engineering, Associate Professor

References

Ванг Л., Ву Х., Матвеев И. Метод стохастического градиента с шагом Барзилай - Борвейна для безусловной нелинейной оптимизации // Известия Российской академии наук. Теория и системы управления. 2021. № 1. С. 79-90. DOI: 10.31857/S0002338821010108

Расчет оптических элементов при протяженном источнике излучения / Е. В. Бызов, Л. Л. Досколович, С. В. Кравченко, М. А. Моисеев, Н. Л. Казанский // Компьютерная оптика. 2023. Т. 47, № 1. С. 40-47.

Юлаева Ю. В., Хомяков А. Ю., Туев В. И. Декомпозиционная световая математическая модель светодиодного излучающего элемента // Научный вестник НГТУ. 2020. № 4 (80). С. 177-197. DOI: 10.17212/1814-1196-2020-4-177-197

Затонский А. В., Варламова С. А., Федосеева К. А. Улучшение компьютерного распознавания параметров пены калийных флотомашин за счет учета антибликов пузырей // Вестник Южно-Уральского государственного университета. Серия: Компьютерные технологии, управление, радиоэлектроника. 2022. Т. 22, № 3. С. 57-67.

Васин П. В., Баринова Е. В. Методика определения погрешности стенда измерения масс-центровочных и инерционных характеристик наноспутников с помощью эталонных объектов // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2022. Т. 21, № 3. С. 7-22.

Кузьменко В. П. Модель спектрального анализа для определения температуры p-n-перехода в бытовых светодиодах на основе нитрида галлия // Фундаментальные и прикладные проблемы техники и технологии. 2025. № 2 (370). С. 135-147. DOI: 10.33979/2073-7408-2025-370-2-135-147

Jeon D., Park J., Ryu J., Choi H. (2024) Design of an Internal Focusing Tube Lens for Optical Inspection Systems. Applied Sciences, vol. 14, no. 4. DOI: 10.3390/app14041518

Koehler S., Indahl B., Szewczyk D., Vorobiev D., Fleming B. (2023) Development and fabrication of a custom vacuum bakeout system for the Far-UV CubeSat SPRITE: Proc. SPIE 12678, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts IX, vol. 12678, pp. 1267819. DOI: 10.1117/12.2676554

De R. [et al.] (2022) Enabling science with CubeSats - trends and prospects. IEEE Journal on Miniaturization for Air and Space Systems, vol. 3, pp. 221-231. DOI: 10.1109/JMASS.2022.3209897

Veljovic M.J. [et al.] (2020) Antennas for CubeSat communication: EPFL Thesis [Electronic resource]. Available at: https://doi.org/10.5075/EPFL-THESIS-7489 (accessed: 15.05.2025).

Abbasy M. [et al.] (2023) System design and review of a very low-cost 6U CubeSat platform based on Pluto experience. Advances in Astronautics Science and Technology, vol. 6, pp. 1-18. DOI: 10.1007/s42423-023-00137-9

Палабугин М. В., Калюжный Д. Г. Современное состояние лазерных технологий в области нанесения функциональных покрытий // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 1. С. 13-22. DOI: 10.22213/2413-1172-2023-1-13-22

Welle R. [et al.] (2020) Overview of CubeSat technology: Handbook of Small Satellites [Electronic resource]. Available at: https://doi.org/10.1007/978-3-030-20707-6_3-1 (accessed: 15.05.2025).

Jo H.J. [et al.] (2022) Analysis of a CubeSat magnetic cleanliness for the space science mission. Journal of Space Technology and Applications [Electronic resource]. Available at: https://doi.org/10.52912/jsta.2022.2.1.41 (accessed: 15.05.2025).

Bouwmeester J. [et al.] (2022) Improving CubeSat reliability: Subsystem redundancy or improved testing? Reliability Engineering and System Safety, vol. 220, Article 108288 [Electronic resource]. Available at: https://doi.org/10.1016/j.ress.2021.108288 (accessed: 15.05.2025).

Разработка технологии 3D-печати корпусных деталей МКА НК / Д. В. Антипов, М. А. Михеев, В. И. Панин, В. В. Жуков // Известия Самарского научного центра Российской академии наук. 2023. Т. 25, № 4 (114). С. 110-113. DOI: 10.37313/1990-5378-2023-25-4-110-113

Девятов Д. А., Чернова А. А. Оценка возможности автоматизации формирования технологических процессов в мелкосерийном производстве // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 3. С. 67-74. DOI: 10.22213/2413-1172-2023-3-67-74

Bollattino S. [et al.] (2024) Fast development and validation of a sensing suite system for CubeSats. Acta Astronautica [Electronic resource]. Available at: https://doi.org/10.1016/j.actaastro.2024.07.005 (accessed: 14.04.2025).

Szewczyk T. [et al.] (2023) Standardization concepts for CubeSat applications: 2023 European Data Handling & Data Processing Conf. (EDHPC), pp. 1-5 [Electronic resource]. Available at: https://doi.org/10.23919/EDHPC59100.2023.10396512 (accessed: 14.04.2025).

Stesina F. [et al.] Investigation of a CubeSat in orbit anomaly through verification on ground. Aerospace [Electronic resource]. Available at: https://doi.org/10.3390/aerospace7040038 (accessed: 14.04.2025).

Latachi I. [et al.] (2024) A systematic approach for CubeSat mission risk analysis: 2024 Int. Conf. on Global Aeronautical Engineering and Satellite Technology (GAST), pp. 1-6 [Electronic resource]. Available at: https://doi.org/10.1109/GAST60528.2024.10520794 (accessed: 09.04.2025).

Chacon S. [et al.] (2022) Modelling CubeSat structure for thermal analysis: 2022 IEEE XXIX Int. Conf. on Electronics, Electrical Engineering and Computing (INTERCON), pp. 1-4 [Electronic resource]. Available at: https://doi.org/10.1109/INTERCON55795.2022.9870086 (accessed: 09.04.2025).

Doyle M. [et al.] (2021) Mission testing for improved reliability of CubeSats: Proc. of SPIE, vol. 11852, pp. 118526M-1-118526M-20 [Electronic resource]. Available at: https://doi.org/10.1117/12.2600305 (accessed: 09.04.2025).

Published

04.10.2025

How to Cite

Kuzmenko В. П., & Soleniy С. В. (2025). Spectrally-Matched Led Illumination System Modeling for Visual Inspection of Sealing Integrity in Small Satellite Enclosures. Vestnik IzhGTU Imeni M.T. Kalashnikova, 28(3), 4–14. https://doi.org/10.22213/2413-1172-2025-3-4-14

Issue

Section

Articles