Creation of a System for Direct Interaction between a VR Simulator for Communication and Practical Skill Training of Dentists and the KUKA KR-6 Robotic Arm
DOI:
https://doi.org/10.22213/2413-1172-2025-4-4-11Keywords:
VR technologies, unity, dental training simulator, KUKA KR-6, C# socket server, virtual simulation, HTC Vive trackersAbstract
This publication describes an innovative system that directly links a virtual environment created with the Unity game engine to a KUKA KR-6 industrial robotic manipulator. The solution is intended for use in dental education. The key advantage of the new architecture is that it eliminates the need for intermediate software layers: control commands and coordinates are transmitted directly from VR headset controllers to the real robot, without third-party drivers or software bridges. To implement the interaction, a dedicated socket server was developed in C#. This approach achieves high positioning accuracy (error less than 1 millimeter) and minimizes data-transfer latency over the local network. To make training more realistic, the system enables bi-directional data exchange between the real position of the robot “patient” and the virtual space. Three HTC Vive Trackers capture the coordinates of the physical object, which are then automatically mirrored in the Unity virtual scene, ensuring full correspondence between the real and virtual patients. System trials demonstrated stability and the feasibility of integrating the solution into an existing educational VR platform. This will allow students to master the communication and practical skills required for treating chronic fibrous pulpitis. The proposed solution opens new prospects for the use of virtual and mixed reality in medical education and can potentially be adapted to other professional training domains.References
Разработка антропоморфного стоматологического симулятора на базе робота Robo-C / А. А. Южаков, С. Д. Арутюнов, Н. Б. Асташина, А. А. Байдаров, И. И. Безукладников, С. А. Сторожев // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 4. С. 13-22. DOI: 10.22213/2413-1172-2023-4-13-22 EDN TGHLJC
Элементы образовательной технологии 4.0 на примере дополненной реальности с использованием аватара антропоморфного стоматологического робота-симулятора / А. А. Байдаров, Р. А. Кокоулин, С. А. Сторожев, А. А. Южаков, С. Д. Арутюнов, Н. Б. Асташина // Вестник ИжГТУ имени М. Т. Калашникова. 2024. Т. 27, № 4. С. 79-89. DOI: 10.22213/2413-1172-2024-4-79-89 EDN JLLMQQ
Стоматологический симулятор на базе робототехнического комплекса с интегрированной смарт-челюстью / С. Д. Арутюнов, А. А. Южаков, Я. Н. Харах, И. И. Безукладников, А. А. Байдаров, Н. Б. Асташина // Российский стоматологический журнал. 2023. Т. 27, № 1. С. 63-70. DOI: 10.17816/dent115139 EDN LMGDRW
Кокоулин А. Н., Южаков А. А. Двухступенная схема обнаружения объектов в подсистеме машинного зрения сервисных роботов // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. 2024. № 49. С. 176-199. DOI: 10.15593/2224-9397/2024.1.09 EDN AWCULA
Особенности использования нейронных сетей для анализа изменений свойств объектов / С. Д. Арутюнов, Н. Б. Асташина, А. А. Байдаров, И. И. Безукладников, А. Н. Кокоулин, Р. А. Кокоулин, С. А. Сторожев, А. А. Южаков // Вестник Пермского национального исследовательского политехнического университета. Электротехника, информационные технологии, системы управления. 2024. № 51. С. 201-220. DOI: 10.15593/2224-9397/2024.3.11 EDN LYKMAV
Blankemeyer S., Wiemann R., Posniak L., Pregizer Ch., Raatz A. (2018).Intuitive Robot Programming Using Augmented Reality. Procedia CIRP, 76, 155-160. DOI: 10.1016/ j.procir.2018.02.028
Liu Guoliang & Sun Wenlei & Li Pinwen (2024). Motion capture and AR based programming by demonstration for industrial robots using handheld teaching device. Scientific Reports, 14. DOI: 10.1038/s41598-024-73747-4
Yang W., Xiao Q., & Zhang Y. (2023). HAR2bot: a human-centered augmented reality robot programming method with the awareness of cognitive load. Journal of Intelligent Manufacturing. DOI: 10.1007/s10845-023-02096-2
István T., Erdei R., Krakó N., Dávid P., Husi G. (2022). 3D CAD design of KUKA robot arm & integration into AR environment to educational purposes. PEMC 2022, 590-596. DOI: 10.1109/PEMC51159.2022.9962864
Mulero-Pérez D., Zambrano-Serrano B., Ruiz Zúñiga E., Fernandez-Vega M., & Garcia-Rodriguez J. (2025). Enhancing Robotics Education Through XR Simulation: Insights from the X-RAPT Training Framework. Applied Sciences, 15, 10020. DOI: 10.3390/app151810020
Erdei T.I., Krakó R., Husi G. (2022). Design of a Digital Twin Training Centre for an Industrial Robot Arm. Applied Sciences, 12, 8862. DOI: 10.3390/app12178862
Саенко А. А., Габов В. С. Создание виртуального рабочего пространства // Информационные технологии XXI века : сборник научных трудов. Хабаровск : Тихоокеанский государственный университет, 2023. С. 168-171. EDN ZHTUHY
Разработка профориентационной VR-игры на платформе UNITY / Е. С. Сергеев, А. Е. Сухова, И. С. Максимов, Н. А. Сенаторов // Научное обозрение. Технические науки. 2021. № 2. С. 38-42. EDN NWCETA
Wang K., Ding L., Dailami F., Matthews J. (2025). A Contemporary Review of Collaborative Robotics Employed in Manufacturing Finishing Operations: Recent Progress and Future Directions. Machines, 13(9), 772. DOI: 10.3390/ machines13090772
Gerget O. (2022). Software Library for KUKA Iiwa Robot to Improve the Efficiency of Human-Robot Interaction in Robotic Medical Applications. In: Interactive Collaborative Robotics. ICR 2022: Lecture Notes in Computer Science, vol. 13719. Springer, Cham. DOI: 10.1007/978-3-031-23609-9_25
Burghardt A., Szybick, D., Gierlak P., Kurc K., Pietruś P., Cygan R. (2020). Programming of Industrial Robots Using Virtual Reality and Digital Twins. Applied Sciences, 10(2), 486. DOI: 10.3390/app10020486
Dogangun Fatih, Bahar Serdar, Yildirim Yigit, Temir Bora, Ugur Emre, Dogan Mustafa (2024). RAMPA: Robotic Augmented Reality for Machine Programming and Automation. DOI: 10.48550/arXiv.2410.13412
Merker S., Pastel S., Bürger D., Schwadtke A., Witte K. (2023). Measurement Accuracy of the HTC VIVE Tracker 3.0 Compared to Vicon System for Generating Valid Positional Feedback in Virtual Reality. Sensors, 23(17), 7371. DOI: 10.3390/s23177371
Weber Mitchell, Hartl Roman, Zäh Michael, Lee Jihyun (2023). Dynamic Pose Tracking Accuracy Improvement via Fusing HTC Vive Trackers and Inertia Measurement Units.International Journal of Precision Engineering and Manufacturing. DOI: 24.10.1007/s12541-023-00891-8
Tseng Juin-Ling, Chu Chiawei (2018).Interaction Design in Virtual Reality Game Using Arduino Sensors. DOI: 10.5772/intechopen.71016
Angra Sheena, Sharma Bhanu, Sharma Avinash (2022). Analysis of Virtual Reality and Augmented Reality SDK’s and Game Engines: A Comparison, pp. 1681-1684. DOI: 10.1109/ ICECAA55415.2022.9936111
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 А А Южаков, С Г Расторгуев, Д В Бондарев, А Н Полещук, С Д Арутюнов, А В Дешев

This work is licensed under a Creative Commons Attribution 4.0 International License.