Evaluation Model for LED Lighting Device Service Life in Terms of System Operating Conditions

Authors

  • V. P. Kuzmenko Saint-Petersburg State University of Aerospace Instrumentation

DOI:

https://doi.org/10.22213/2413-1172-2025-4-12-21

Keywords:

led lighting devices, LED light source, quality assessment, service life, Product life cycle modeling

Abstract

This paper presents the concept of a multi-level model for service life predicting of lighting devices based on semiconductor light sources, with respect to systemic operational factors and the degradation of the associated components. Unlike standard assessment methods limited to analyzing the reduction the light-emitting diode luminous flux, the proposed approach also considers shifts in chromaticity coordinates, light emission flicker levels, and the failure resistance of the power supply unit. The model is grounded in physically justified laws and includes the degradation evaluation in the crystal structure, photoluminescent materials, optical elements, and life-limiting components of the power unit. Transition from accelerated testing to actual operating conditions using reference time, calculated on thermal, electrical, humidity, and ultraviolet exposure level basis is the key element. The integral reliability function is generated by considering partial failure criteria, allowing statistical dependencies between degradation mechanisms to be taken into account. The model is validated by experimental data obtained from various stress conditions runoff. Numerical modeling results, confirming the validity of the methodology for aligning degradation patterns and acceleration factors, are provided. The proposed approach ensures both result reproducibility for serial quality control purposes and applicability in estimating expected warranty-related costs. The developed modeling concept can be integrated into quality management practices in lighting device manufacturing to enhance service life prediction accuracy and identify structurally vulnerable components at the design stage.

Author Biography

V. P. Kuzmenko, Saint-Petersburg State University of Aerospace Instrumentation

PhD in Engineering, Associate Professor

References

Ahmad A.E.-B.A., Ghazal M.G.M. (2020) Exponentiated additive Weibull distribution // Reliability Engineering & System Safety, vol. 193, 106663. DOI: 10.1016/j.ress.2019.106663

Albassam M., Ahsan-Ul-Haq M., Aslam M. (2023) Weibull distribution under indeterminacy with applications // AIMS Mathematics, vol. 8, pp. 10745-10757. DOI: 10.3934/ math.2023545

ANSI/IES TM-28-20. Projecting Long-Term Luminous Flux Maintenance of LED Lamps and Luminaires. New York: Illuminating Engineering Society, 2020 (Technical Memorandum).

Cao Y., Yuan W., Chen W., Li M., Fan J., Zhang G. (2020) Predicting of luminous flux for a LED array using artificial neural network // IEEE Proceedings of the 2020: 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow. DOI: 10.1109/ EuroSimE48426.2020.9152620

Zhou Z.H., Ma J.M., Liu Q.Q., Zeng Q., Tian X. (2022) A kind of fast Gaussian particle filter based on artificial fish school algorithm // Journal of Control and Decision, vol. 9, pp. 175-185. DOI: 10.1080/23307706.2021.1934129

Кузьменко В. П., Солёный С. В. Модель предиктивного обслуживания для управления качеством сетей светодиодного освещения // Вестник МГТУ им. Г. И. Носова. 2023. № 3 [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/model-prediktivnogo-obsluzhivaniya-dlya-upravleniya-kachestvom-setey-svetodiodnogo-osvescheniya (дата обращения: 03.09.2025).

Кузьменко В. П., Солёный С. В., Солёная О. Я. Управление качеством светодиодных осветительных приборов : монография. Санкт-Петербург : Санкт-Петербургский государственный университет аэрокосмического приборостроения (ГУАП), 2024. 184 с. ISBN 978-5-8088-1907-8

Кораблев В. А., Минкин Д. А. Исследование влияния теплового режима на интенсивность излучения полупроводниковых источников света // Приборостроение. 2025. № 4 [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/issledovanie-vliyaniya-teplovogo-rezhima-na-intensivnost-izlucheniya-poluprovodnikovyh-istochnikov-sveta (дата обращения: 03.09.2025).

Rocchetta R., Dersin P., Perrone E. (2024) A survey on LED Prognostics and Health Management and uncertainty reduction // Microelectronics Reliability, vol. 157, 115399. DOI: 10.1016/j.microrel.2024.115399

Чирков О. Н., Антиликаторов А. Б., Шкаровский К. М., Тамбовцев М. Н. Оптимизации оценки качества полупроводниковых пластин с помощью нейротехнологий CNN // Вестник Воронежского государственного технического университета. 2025. Т. 21, № 1. С. 81-87. DOI: 10.36622/1729-6501.2025.21.1.012

La Q.T., Vintr Z., Vališ D., Žák L., Kohl Z. (2025) Reliability testing and machine learning approach for modelling high-power light-emitting diode reliability // MATEC Web of Conferences, vol. 413, 03005. DOI: 10.1051/matecconf/ 202541303005

Tan K.-Z., Lee S.-K., Low H.-C. (2021) LED lifetime prediction under thermal-electrical stress // IEEE Transactions on Device and Materials Reliability, vol. 21, no. 3, pp. 310-319. DOI: 10.1109/TDMR.2021.3085579

Палабугин М. В., Калюжный Д. Г. Современное состояние лазерных технологий в области нанесения функциональных покрытий // Вестник ИжГТУ имени М. Т. Калашникова. 2023. Т. 26, № 1. С. 13-22. DOI: 10.22213/2413-1172-2023-1-13-22

Кузьменко В. П. Контроль качества светодиодных источников света на основе фрактального моделирования температурного поля // Известия Самарского научного центра РАН. 2025. Т. 27, № 3. С. 99-109. DOI: 10.37313/ 1990-5378-2025-27-3-99-109

Vyas R., Navin K., Tripathi G.K., Kurchania R. (2021) Structural, magnetic, photocatalytic, and electrochemical studies of the mesoporous nickel oxide (NiO) nanostructures // Optik, vol. 231, 166433. DOI: 10.1016/j.ijleo.2021.166433

Маняхин Ф. И., Мокрецова Л. О. Закономерность снижения квантового выхода светодиодов с квантовыми ямами при длительном протекании тока с позиции модели ABC // Светотехника. 2021. № 3. С. 29-35.

Электрофизические причины ограничения эксплуатационных режимов светодиодов с квантовыми ямами / Ф. И. Маняхин, Л. О. Мокрецова, А. А. Скворцов, Д. О. Варламов // Светотехника. 2025. № 3. С. 20-26.

Lokesh J., Kini S., Padmasali A. (2025) Color-Based Lifetime Estimation of LEDs Using Spectral Power Distribution Prediction Through Analytical and Machine Learning Models // IEEE Access, vol. 13, 61665-61674. DOI: 10.1109/ ACCESS.2025.3558559

Ke X., Wang X., Qin H., Liang J. (2023) Experimental Study on Chromaticity Control in Visible Light Communication Systems // Photonics, vol. 10, 1013. DOI: 10.3390/ photonics10091013

Ibrahim M.S., Fan J., Yung W.K.C., Jing Z., Fan X., Van Driel W., Zhang G. (2021) System-level reliability assessment for high-power light-emitting diode lamp based on a Bayesian network method // Measurement, vol. 176, 109191. DOI: 10.1016/j.measurement.2021.109191

Published

28.12.2025

How to Cite

Kuzmenko В. П. (2025). Evaluation Model for LED Lighting Device Service Life in Terms of System Operating Conditions. Vestnik IzhGTU Imeni M.T. Kalashnikova, 28(4), 12–21. https://doi.org/10.22213/2413-1172-2025-4-12-21

Issue

Section

Articles