A Kind of Phase Enlargement of Semi-Markov Systems on the Example of Modeling a Synchronous Automated Line
DOI:
https://doi.org/10.22213/2410-9304-2018-3-97-102Keywords:
semi-Markov system, phase enlargement, approximation, automated line, stationary distributionAbstract
The paper deals with the phase enlargement of semi-Markov systems that does not require the definition of the stationary distribution of the embedded Markov chain. Phase enargement is the equivalent replacement of a semi-Markov system with a common phase space of states by a system with a discrete state space. The determination of the stationary distribution of the embedded Markov chain for systems with a continuous phase space of states is a complex and not always solvable problem, since in a number of cases it leads to the solution of integral equations with kernels containing the sum and difference of variables. For such equations only a particular solution is known, but there are no general solutions for the present day. For this purpose, we prove a lemma on the form of the distribution function of the difference of two random variables, provided that the first is greater than the subtrahend. It is shown that the form of the distribution function of the difference RV under this condition depends on one constant, which is determined by the numerical method for solving the equation given in the lemma. The use of this method is demonstrated using the example of simulation of an automated synchronous line with a free cycle of operation. Automated synchronous lines with a free operation cycle are increasingly used in machine-tool construction as having a significant advantage in comparison with synchronous lines operating in a rigid cycle, as well as with automated lines with a reflex control that ensure the transfer of products in the presence of polling of end-of-service sensors installed at each position.References
Королюк В. С. Стохастические модели систем / отв. ред. А. Ф. Турбин. Киев : Наук. думка, 1989. 208с.
Королюк В. С., Турбин А. Ф. Процессы марковского восстановления в задачах надежности систем. Киев : Наук. думка, 1982. 236 с.
Там же.
Ushakov I. A. Probabilistic Reliability Models (Wiley, 2012).
Yao D. D., Buzacott J. A. Flexible Manufacturing Systems: A Review of Analytical Models, Management Science, 32 (1986) 890-905.
MacGregor Smith J., Tan B. (Eds.) Handbook of Stochastic Models and Analysis of Manufacturing System Operations (Springer-Verlag New York, 2013).
Curry G. L., Feldman R. M. Manufacturing Systems Modeling and Analysis, 2nd Edition (Springer-Verlag Berlin Heidelberg, 2011), p. 338.
Limnios N., Nikulin M. Recent Advances in Reliability Theory: Methodology, Practice, and Inference, еds. N. Limnios, M. Nikulin (Springer Science+Business Media, New York, 2000), p. 514.
Limnios N., Oprisan G. Semi-Markov Processes and Reliability (Springer Science+Business Media, New York, 2001).
Jansen J., Limnios N. (Eds.) Semi-Markov Models and Applications (Kluwer Academic Publishers, The Netherlands, 1999).
Korolyuk V. S., Swishchuk A. Semi-Markov Random Evolutions (Kluwer Academic Publisher, Dordrecht, Boston, London, 1995).
Korolyuk V. S., Limnios N. Stochastic Systems in Merging Phase Space (World Scientific, Imperial Coledge Press, 2005).
Silvestrov D., Silvestrov S. Nonlinearly Perturbed Semi-Markov Processes (Springer, Cham, 2017), 143 p.
Zamoryonov M. V., Kopp V. Ya., Chengar O. V., Rapatskiy Yu. L. Simulation of a single-component system using the trajectories method taking into account the scheduling preventive maintenance. Cybernetics and Mathematics Applications in Intelligent Systems Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017), vol 2 / Springer International Publishing Switzerland 2017. - P. 264-271
Заморёнов М. В., Копп В. Я., Заморёнова Д. В., Скидан А. А. Моделирование процесса функционирования обслуживающего устройства с необесценивающими отказами методом путей // Известия Тульского государственного университета. Технические науки. Вып. 7: в 2 ч. Ч. 1. Тула : Изд-во ТулГУ, 2016. С. 71-82.
Королюк В. С., Турбин А. Ф. Фазовое укрупнение сложных систем. Киев : Вища шк., 1978. 112 с.
Копп В. Я. Моделирование автоматизированных производственных систем : монографія. Севастополь : СевНТУ, 2012. 700 с.
Там же.
Байхельт Ф., Франкен П. Надежность и техническое обслуживание. Математический подход / пер. с нем. М. : Радио и связь, 1988. 392 с.
Копп В. Я. Моделирование автоматизированных производственных систем : монографія. Севастополь : СевНТУ, 2012. 700 с.