Comparison of the Current Tubes Method with Normal Numerical Methods with the Two-Dimensional Filtration of the Marked Liquid

Authors

  • S. V. Denisov Ufa State Petroleum Technical University
  • V. E. Lyalin Kalashnikov ISTU
  • R. O. Sultanov Kalashnikov ISTU

DOI:

https://doi.org/10.22213/2410-9304-2018-3-129-135

Keywords:

method of current tubes, finite volume method, finite difference method

Abstract

The finite volume method (FVM) was chosen as a widely used numerical method for solving equations without allowance for the dispersion term,. The paper presents an introduction to the essence of the method applied to the field of hydrodynamics, and its comparison with other numerical methods. The finite volume method (FVM) initially developed as a special formulation of the finite difference method (FDM). It is shown that the finite difference method (FDM) and the finite element method (FEM) can be used to implement the finite volume method. The finite volume method uses the concept of control volume or control surface, so sometimes this method is called the control volume method. In this case, the basic conservation equation is written in integral form. Further, the discretization of this equation is carried out, which in this example will be performed by the FDM method. It is shown that for a large number of current tubes, a solution based on the current tube method is accurate for the case of lack of diffusion, and can be used to calculate the spatial error.

Author Biographies

S. V. Denisov, Ufa State Petroleum Technical University

PhD in Engineering, Associate Professor

V. E. Lyalin, Kalashnikov ISTU

DSc in Engineering, DSc in Geology and Mineralogy, Professor

R. O. Sultanov, Kalashnikov ISTU

PhD in Engineering, Associate Professor

References

Роуч П. Вычислительная гидродинамика / пер. с англ. ; под ред. П. И. Чушкина. М. : Мир, 1980. 616 с.

Chung, T. J. Computational fluid dynamics, CUP, Cambridge, 2002. 1036 p.

Азиз Х., Сеттари Э. Математическое моделирование пластовых систем / пер. с англ. ; под ред. М. М. Максимова. М. : Ижевск : Институт компьютерных исследований, 2004. 416 с. Репринтное издание. Оригинальное издание: М. : Недра, 1982.

Schiozer D. J. Simultaneous simulation of reservoir and surface facilities, Ph.D Thesis, Stanford University, 1994

Juanes R. Displacement theory and multiscale numerical modeling of three-phase flow in porous media, Ph. D. Thesis, University of California, Berkeley, California, 2003.

Horne R. N. Modern well test analysis: a computer-aided approach. 4th printing. Palo Alto: Petroway, 1990 - 183 p.

Пыхачев Г. Б., Исаев Р. Г. Подземная гидравлика : учеб. пособие. М. : Недра, 1972. 360 с.

Thiele M. R. Modeling multiphase flow in heterogeneous media using streamtubes, Ph. D. Thesis, Stanford University, Stanford, California, 1994. 203 p.

Wesseling P. Principles of computational fluid dynamics, Springer, Berlin, 2001. 644 р.

Wong T. W. and Aziz K. Considerations in the development of multipurpose reservoir simulation models // First and Second International Forum on Reservoir Simulation, Alpbach, Austria, 1988 and 1989. 77-208 р.

Tureyen O. I., Karacali O., Caers J. A., Parallel, Multiscale Approach to Reservoir Modeling // 9th European Conference on the Mathematics of Oil Recovery, 30 August - 2 September 2004. Cannes, France. рр. 1-8.

Thiele M. R., Batycky R. P. and Blunt M. J. A streamline-based 3D filed scale compositional reservoir simulator // SPE Reservoir Engineering, Oct. 5-8 1997. San Antonio, Texas, U.S.A. Рр. 1-12.

Published

11.10.2018

How to Cite

Denisov С. В., Lyalin В. Е., & Sultanov Р. О. (2018). Comparison of the Current Tubes Method with Normal Numerical Methods with the Two-Dimensional Filtration of the Marked Liquid. Intellekt. Sist. Proizv., 16(3), 129–135. https://doi.org/10.22213/2410-9304-2018-3-129-135

Issue

Section

Articles