Two-element Selective Assembly with Non-linear Input-output Models Using Approximation
DOI:
https://doi.org/10.22213/2410-9304-2024-2-80-86Keywords:
least square method, taylor series, approximation, Nonlinear relation, mathematical model, selective assemblyAbstract
The process of single-parameter selective assembly of two elements is considered for the case of a nonlinear input-output modelapplication. Due to the objective complexity of determining the relations between the limit deviations and tolerances of input and output parameters, as well as the relative accuracy smallness due to the precision of the assembly, it is reasonable to represent the initial model in the form of a first-order polynomial of two variables. Linearisation is proposed to be carried out using a method of obtaining an approximating relation in the form of a Taylor series and by means of a multivariate least square method, with subsequent variantcomparison according to a given criterion. The criterion for choosing one of the two proposed variants is the minimum average approximation error. To determine the values of group tolerances, it is proposed to use two methods: assigning the equal tolerances and assigning tolerances of the equal relative accuracy. For both methods the derivation of the set-making equations is given, allowing the use of selective group numbersunder certain assumptions. Using a linearized model, the main indicators of the assembly process are determined: the number of assembly sets, work in progress and preliminary scrap. An example is given for the case when the output parameter represents the product of the input elementparameters. The coefficients were calculated and the set-making equation was derived. Comparison of the results presented in the paper with earlier obtained results (initial nonlinear model) shows a relatively small divergence in calculating the boundaries of selective groups, the error in determining the probability of obtaining assembly sets as a whole does not exceed 0.5%. The proposed method is applicable in case of small values of relative accuracy of input and output parameters, which in practice corresponds to selective assembly of precision products.References
Филипович О. В., Филипович В. О. Решение задачи селективной сборки двух элементов с мультипликативной моделью "вход-выход" с использованием аппроксимации // Автоматизация и измерения в машино- и приборостроении, 2023. № 1 (21). С. 61-69.
Filipovich O., Filipovich V. Determination the selective assembly indicators of two elements with an output parameter in the form of a product of input // Proceedings - 2023 International Conference on Industrial Engineering, Applications and Manufacturing, 2023. Pp. 1091-1095. DOI: 10.1109/ICIEAM57311.2023. 10139199.
Xing M., Zhang Q., Jin X., Zhang Zh. Optimization of Selective Assembly for Shafts and Holes Based on Relative Entropy and Dynamic Programming // Entropy, 2020. 22. 1211. DOI: 10.3390/e22111211.
Rajamani M.R. Application of Selective Assembly as an Aerospace Design for Manufacturing and Assembly Principle for Effective Variation Management in Aerospace Assemblies // SAE International Journal of Advances and Current Practices in Mobility, 2021. 3 (3). DOI: 10.4271/2021-01-0005.
Thys Th., Smet W. Selective assembly of planetary gear stages to improve load sharing // Forschung im Ingenieurwesen, 2023. 87. Pp. 1-9. DOI: 10.1007/s10010-023-00646-x.
Clottey T., Benton. Wc. Sharing Quality Distribution Information for the Selective Assembly of Intermediary Components in the Automotive Industry // Production and Operations Management, 2019. DOI:10.1111/poms.13094.
Demir O.E., Colledani M., Paoletti R., Pippione G. Function-based selective and adaptive cyber-physical assembly system for increased quality in optoelectronics industry //Computers in Industry, 2023. Vol. 148. 103915. DOI:10.1016/j.compind.2023.103915.
Kannan S.M., Pandian G.R.A new selective assembly model for achieving specified clearance in radial assembly // Materials Today: Proceedings,2021. Vol. 46, Part 17. Pp. 7411-7417. DOI: 10.1016/j.matpr.2020. 12.1229.
Filipovich O.V., Balakin A.I., Balakina N.A., Filipovich V.O.Simulation model of selective assembly of the conrod-piston group unit of internal combustion engines, taking into account measurement errors during sorting // Journal of Physics: Conference Series, 2021. 2096 (1):012188. DOI: 10.1088/1742-6596/2096/1/ 012188.
Филипович О. В., Карлов А. Г., Волошина Н. А. Модель процесса однопараметрической селективной сборки сложных изделий // Известия Тульского государственного университета. Технические науки. 2021. № 5. С. 398-404. DOI: 10.24412/2071-6168-2021-5-398-404.
Никируй А.Э., Дроговоз П. А. Эффективность селективной сборки прецизионных оптических систем на основе виртуальной сборки изделий при организации производства на предприятиях машиностроения // Сборка в машиностроении, приборостроении. 2022. № 2. С. 58-61. DOI: 10.36652/0202-3350-2022-23-2-58-61.
Медведев А. В., Халатов Е. М. Алгоритмы оптимального распределения деталей по комплектам для селективной сборки изделий // Вестник машиностроения. 2022. № 11. С. 33-40. DOI 10.36652/0042-4633-2022-11-33-40.
Никируй А.Э., Вайнер А. В., Дроговоз П. А. Методика автоматизации процесса селективного выбора деталей на основе виртуальной сборки при производстве прецизионных оптических систем // Технология машиностроения. 2022. № 5. С. 21-28.
Левин И.А.,Качурин Ю.Ю.Автоматизация процесса комплектования оптических элементов при селективной сборке фотообъективов // Оптический журнал, 2021. Т. 88, № 4. С. 17-22. DOI: 10.17586/1023-5086-2021-88-04-17-22.
Набатников Ю. Ф., Нго В. Т., Нго В. Н. Обеспечение заданного ресурса силовых гидроцилиндров механизированных крепей селективной сборкой их соединений // Горный информационно-аналитический бюллетень (научно-технический журнал). 2019. № 12 (45). С. 3-18. DOI: 10.25018/0236-1493-2019-12-45-3-18.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Олег Викторович Филипович
This work is licensed under a Creative Commons Attribution 4.0 International License.