Fast Discrete Fourier Transform of Complex Finite Signals with a Number of Samples Not Equal to a Power of Two with Limited Computing Function

Authors

  • A. V. Ponomarev Kalashnikov Izhevsk State Technical University
  • N. V. Ponomareva Sevastopol State University
  • O. V. Ponomareva Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2410-9304-2025-2-112-120

Keywords:

modulo ordering, vector analysis, spectral analysis, finite discrete signal, fast Fourier transform

Abstract

The article is devoted to the development of the theoryfor digital processing of finite discrete signals, the method and algorithm for the fast discrete Fourier transform of complex finite signals with a number of samples not equal to a power of two, with limited computing function. The development of the method and algorithm is implemented on the internal structure analysis of the discrete Fourier transform basis - a system of discrete exponential functions. Structure analysis of the discrete Fourier transform basis made it possible to eliminate a significant drawback of fast Fourier transform algorithms: limited durations of finite discrete signals that allow fast procedure application. The work is a continuation of the authors' research in the field of digital spectral and vector analysis; in particular, it considers a new basis for the discrete Fourier transform, which provides for a transition to the frequency domain with a selected parameter of a finite discrete signal in the time domain. The article provides a theoretical and experimental justification for the efficiency and effectiveness of the proposed method and algorithm for the fast Fourier transform of complex finite signals with a number of samples not equal to a power of two, with limited computing function. The effectiveness and efficiency of the proposed method and algorithm of fast discrete Fourier transform are confirmed by the following proven provisions. Firstly, the range of finite discrete signaldurations studied by fast methods is significantly expanded. Secondly, the researcher can realize the advantages of the method and algorithm with limited available computing function. Thirdly, using the proposed method and algorithm of fast discrete Fourier transform, it is possible to calculate the coefficients (bins) of the DFT in the selected spectrum region of a finite discrete complex signal. The role and place of the work seems to be important and relevant in many subject areas of science and technology, such as, for example, vibroacoustic functional diagnostics of objects in mechanical engineering and medicine, as well as in the detection and classification of objects.

Author Biographies

A. V. Ponomarev, Kalashnikov Izhevsk State Technical University

PhD in Economics, Associate Professor

N. V. Ponomareva, Sevastopol State University

PhD in Engineering, Associate Professor

O. V. Ponomareva, Kalashnikov Izhevsk State Technical University

DSc in Engineering, Professor

References

Ponomareva O.V., Ponomarev A.V. Theoretical Foundations of digital Vector Fourier Analysis of two-dimensional Signals Padded with Zero Samples|// Information and Control Systems. 2021. no. 1 (110), pp. 55-64.

Alexey V. Ponomarev Systems Analysis of Discrete Two-Dimensional Signal Processingin Fourier Bases. Springer Nature Switzerland AG 2020 M. Favorskaya and L. C. Jain (eds.), Advances in Signal Processing, Intelligent Systems Reference Library 184, https://doi.org/10.1007/978-3-030-40312-6_7.

Пономарева Н. В., Пономарева О. В. Теория, методы и алгоритмы определения огибающих дискретных финитных действительных сигналов на основе параметрических преобразований Фурье // Цифровая обработка сигналов. 2023. № 4. С. 3-12.

Пономарева О. В, Пономарев А. В., Смирнова Н. В. Определение дискретно-частотного преобразования Фурье с варьируемым параметром в частотной области // Цифровая обработка сигналов. 2021. №1. С. 3-9.

Ponomareva O.V., Ponomarev A.V. Theoretical Foundations of digital Vector Fourier Analysis of two-dimensional Signals Padded with Zero Samples|// Information and Control Systems. 2021, no. 1 (110), pp. 55-64.

Pan J., Li L.-P., You Z.-H., Yu C.-Q., Ren Z.-H., Guan Y.-J. Prediction of Protein-Protein Interactions In Arabidopsis, Maize, and Rice by Combining Deep Neural Network With Discrete Hilbert Transform/ Frontiers in Genetics. 2021. Т. 12. № FEB. С. 745228.

Lin H., Izabal I., Govalkar A., Melgoza C.M., Groom T., George K., Lee K., Codding A., Erdogan A. Signal Generation and Continuous Tracking with Signal Attribute Variations Using Software Simulation/ In: Proceedings of CONECCT 2021: 7th IEEE International Conference on Electronics, Computing and Communication Technologies. 7. 2021.

Song Y., Duan F., Wu F., Liu Z., Gao S. Assessment of the Current Collection Quality of Pantograph-Catenary with Contact Line Height Variability In Electric Railways/ IEEE Transactions on Transportation Electrification. 2022. Vol. 8. No. 1.

Luo J., Shi J. Sinusoidal Representation of a Transient Signal Based On The Hilbert Transform/ Power System Protection and Control. 2022. Vol. 50. No 1. DOI: 10.19783/j.cnki.pspc.210309.

Bühling B., Maack S., Strangfeld C., Schweitzer T. Enhancing the Spectral Signatures of Ultrasonic Fluidic Transducer Pulses for Improved Time-of-Flight Measurements/ Ultrasonics. 2022. Vol. 119. С. 106612.

Pavlenko I., Savchenko I., Ivanov V., Ruban A., Pitel J. Diagnostics of the Rotor-Stator Contact by Spectral Analysis of the Vibration State for Rotor Machines In: Advanced Manufacturing Processes III.InterPartner: Grabchenko's International Conference on Advanced Manufacturing Processes. Cham, 2022.

Cabrel W., Mumanikidzwa G.T., Shen J., Yan Yu. Enhanced Fourier Transform Using Wavelet Packet Decomposition Journal of Sensor Technology. 2024. Vol. 14. No. 1.

Hamarsheh Q., Daoud O., Baniyounis M., Damati A. Narrowband Internet-of-Things to Enhance the Vehicular Communications Performance Future Internet. 2023. Vol. 15. No. 1.

Sun Qi., Zhao Ya., Wang Yu., Wang R. Verification and Analysis of The Pavement System Transfer Function Based on Falling Weight Deflectometer Testing/ Journal of Nondestructive Evaluation. 2024. Vol. 43. No. 4. С. 110.

Трахтман А. М. Введение в обобщенную спектральную теорию. М.: Сов. радио. 1972, 352 с.

Рангайян А. М. Анализ биомедицинских сигналов. Практический подход. М.: Физматгиз, 2007. 440 с.

Richard G. Lyons Understanding Digital Signal Processing, Third Edition, 2019, pp. 709.Upper Sydney.

Rohman A., Ghazali M.A.B., Windarsih A., et al.Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules. 2020; 25(22): 5485. doi:10.3390/molecules25225485.

Куприянова Д. B., Перцев Д. Ю., Татур М. М. Классификация методов сегментации снимков земной поверхности // Системный анализ и прикладная информатика. 2023. № 4. С. 20-28. URL: https://doi.org/10.21122/2309-4923-2023-4-20-28.

Ribeiro da Cunha B, Fonseca LP, Calado CRC. Metabolic fingerprinting with Fourier-transform infrared (FTIR) spectroscopy: Towards a high-throughput screening assay for antibiotic discovery and mechanism-of-action elucidation. Metabolites. 2020;10(4):145. doi: 10.3390/metabo10040145.

Fahelelbom KM, Saleh A, Al-Tabakha MMA, Ashames AA. Recent applications of quantitative analytical FTIR spectroscopy in pharmaceutical, biomedical, and clinical fields: A brief review. Rev Anal Chem. 2022; 41(1): 21-33. doi:10.1515/revac-2022-0030.

Zamparo M. Large Deviations in Discrete-Time Renewal Theory // Stochastic Process. Appl. 2021. V. 139. P. 80-109. URL: https://doi.org/10.1016/j.spa.2 021. 04.01 4

Лобатый А. А., Бумай А. Ю. Особенности построения алгоритмов оценивания параметров многомерных случайных процессов // Системный анализ и прикладная информатика. 2020. № 1. С. 24-32. URL: https://doi.org/10.21122/2309-4923-2020-1-24-32

Marple S. L. Jr. Digital Spectral Analysis. 2nd edition. New York: Dover Publications, 2019. 435 p.

Gonzalez R.C., Woods R.E. Digital Image Processing, 4th Ed. Published by Pearson. 2018. 1168 p.

Published

06.07.2025

How to Cite

Ponomarev А. В., Ponomareva Н. В., & Ponomareva О. В. (2025). Fast Discrete Fourier Transform of Complex Finite Signals with a Number of Samples Not Equal to a Power of Two with Limited Computing Function. Intellekt. Sist. Proizv., 23(2), 112–120. https://doi.org/10.22213/2410-9304-2025-2-112-120

Issue

Section

Articles