Estimation of Possibilities of Using Fractal Dimension and Information Entropy of Elastic Waves for Assessment of Damage to Steel 20 at Low Cycle Fatigue

Authors

  • A. A. Khlybov Nizhny Novgorod State Technical University named after R. E. Alekseev
  • Y. G. Kabaldin Nizhny Novgorod State Technical University named after R. E. Alekseev
  • M. S. Anosov Nizhny Novgorod State Technical University named after R. E. Alekseev
  • D. A. Ryabov Nizhny Novgorod State Technical University named after R. E. Alekseev
  • D. A. Shatagin Nizhny Novgorod State Technical University named after R. E. Alekseev
  • A. V. Kiselev Nizhny Novgorod State Technical University named after R. E. Alekseev

DOI:

https://doi.org/10.22213/2413-1172-2021-3-17-25

Keywords:

damage, low-cycle fatigue, elastic waves, steel, fractal dimension, information entropy

Abstract

The paper presents the results of experimental studies of specimens made of steel 20 for low-cycle fatigue (cantilever bending). A fatigue curve was obtained for the material under study in the range of stress amplitudes from 210 to 380 MPa. In logarithmic coordinates, this dependence is linear. According to the research results, it has been shown that one of the structure-sensitive characteristics is the shape of an elastic wave pulse transmitted through the medium under study. To analyze the pulse shape of an elastic wave, an algorithm is proposed for assessing the damage of materials, using the values of the fractal dimension of the attractor and the information entropy in the process of fatigue loading. It was found that according to the obtained dependences, the process of fatigue damage accumulation can be conditionally divided into 2 phases. In the first phase, the entropy of the ultrasonic signal practically does not change and remains within the range of 0.05-0.1 nat. The fractal dimension of the attractor of the ultrasonic signal increases from 1.5 to 1.8. During the transition to the second phase, the maximum values of the fractal dimension of the attractor of the ultrasonic signal are observed, the values of which decrease in the second phase to 1.4 before the destruction of the sample. The information entropy values in the second phase increase monotonically up to 0.55 nat. Studies have shown that the obtained dependences practically do not change with a change in the stress amplitude. The results of studies at various stress amplitudes have shown that the characteristics of the fractal dimension of the attractor and the information entropy of elastic wave pulses that have passed through the zones of accumulated damage in the metal expand and supplement the capabilities of acoustic methods in the problems of assessing the performance of materials with low-cycle fatigue and make it possible to identify the stage of destruction of steel 20.

Author Biographies

A. A. Khlybov, Nizhny Novgorod State Technical University named after R. E. Alekseev

DSc in Engineering, Professor

Y. G. Kabaldin, Nizhny Novgorod State Technical University named after R. E. Alekseev

DSc in Engineering, Professor

M. S. Anosov, Nizhny Novgorod State Technical University named after R. E. Alekseev

PhD in Engineering

D. A. Ryabov, Nizhny Novgorod State Technical University named after R. E. Alekseev

Post-graduate

D. A. Shatagin, Nizhny Novgorod State Technical University named after R. E. Alekseev

PhD in Engineering

A. V. Kiselev, Nizhny Novgorod State Technical University named after R. E. Alekseev

Post-graduate

References

Терентьев В. Ф., Кораблева С. А. Усталость металлов. М. : Наука, 2015. 484 с.

Zavoichinskaya E. B. On the Theory of Stage-by-Stage Fatigue Failure of Metalsupona Complex Stress State. Mach. Manuf. Reliab., 2018, vol. 47, pp. 72-80. https://doi.org/10.3103/S1052618818010156.

Ефимов А. Г. Электромагнитные и магнитные методы неразрушающего контроля для контроля накопления поврежденности в конструкционных сталях и сплавах (обзор) // Заводская лаборатория. Диагностика материалов. 2020. № 86 (8). С. 49-57. https://doi.org/10.26896/1028-6861-2020-86-8-49-57.

Муравьев В. В., Муравьева О. В. Оценка роста усталостных трещин в боковых рамах тележек грузовых вагонов акустико-эмиссионным методом // Деформация и разрушение материалов. 2016. № 9. С. 24-29.

Gonchar A. V., Bizyaeva O. N., Klyushnikov V. A., Mishakin V. V. Ultrasonic and Eddy-Current Study of Plastic Deformation in Austenitic-Steel Welds. Russian J. of Nondestructive Testing, 2016, vol. 52, no. 10, pp. 598-604.

Mishakin V.V., Klyushnikov V.A., Gonchar A.V., Kachanov M. On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring. International J. of Engineering Science, 2019, vol. 135, pp. 17-22.

Murav’ev V.V., Volkova L.V., Gromov V.E., Glezer A.M. Estimation of the Residual Stresses in Rails Using Electromagnetic - Acoustic Introduction - Reception of Waves. Russian Metallurgy (Metally), 2016, no. 10, pp. 1002-1005.

Kumar J., Ananthakrishna G. Modeling the Complexity of Acoustic Eemission During Intermittent Plastic Deformation: Power Laws and Multifractal Spectra. Physical Review, 2018, vol. 97, no. 1, pp. 1-12.

Ваньков Ю. В., Филаретов Г., Червова А. Применение фрактального анализа для совершенствования методов акустического неразрушающего контроля // Датчики и системы = Sensors&Systems. 2016. № 12. С. 29-35.

Sysoev O. E., Kolykhalov D. G., Kuznetsоv E. A., Belykh S. V. Forecasting Durability and Cyclic Strength of Aluminum Alloy AA2219 Using Fractal Analysis of Acoustic Emission. ASRTU Conference Proceedings: IV Sino-Russian ASRTU Symposium on Advanced Materials and Processing Technology (Ekaterinburg, Russia, 23-26 June 2016). Dubai: Knowledge E, 2016, pp. 161-167. DOI: 10.18502/kms.v1i1.579.

Штофель О. А., Рабкина М. Д. Использование мультифрактального анализа для оценки свойств конструкционных сталей // Universum: технические науки. 2016. № 10 (31). URL: https://7universum.com/ru/tech/archive/item/3791 (дата обращения: 27.07.2021).

Jan Urban, Intech Open (July 7th 2016). Information Entropy, Applications from Engineering with MATLAB Concepts. DOI: 10.5772/63401.

Tanvir F., Sattar T., Mba D. Identification of Fatigue Damage Evaluation Using Entropy of Acoustic Emission Waveform. SN Appl., 2020, Sci. 2, 138. https://doi.org/10.1007/s42452-019-1694-7.

Курбатов Ю. Е., Кашеварова Г. Г. Поврежденность как основанная мера усталостного разрушения // Международный научно-исследовательский журнал. 2016. № 5 (47). Ч. 3. С. 126-133.

Базулин Е. Г. Применение процедуры «выбеливания» эхосигналов для уменьшения уровня структурного шума при проведении ультразвукового контроля // Дефектоскопия. 2019. № 11. С. 3-15.

Ellyin F., Kujawski D. Anenergy-Based Fatigue Failure Criterion. Microstructure and Mechanical Behaviour of Materials, 2016, vol. 11, EAMS, pp. 591-601.

Антонов А. М., Ерофеев В. И., Леонтьева А. В. Влияние поврежденности материала на распространение волны Рэлея вдоль границы полупространства // Вычислительная механика сплошных сред. 2019. Т. 12, № 3. С. 293-300.

Структурный шум при ультразвуковом контроле изделий из материалов со сложной структурой / В. Г. Карташев [и др.] // Дефектоскопия. 2018. № 1. С. 19-32.

Романишин Р. И., Романишин И. М. Обработка обратно рассеянного сигнала в ультразвуковом контроле // Дефектоскопия. 2018. № 6. С. 11-16.

Chaoshuai Han, Xianqiang Qu, Yongliang Ma, Dexin Shi. Experimental and Numerical Study of Fatigue Damage Assessment under Combined High and Low Cycle Loading. Hindawi Shock and Vibration, 2018, Article ID 9045658, 12 p.

Published

02.12.2021

How to Cite

Khlybov А. А., Kabaldin Ю. Г., Anosov М. С., Ryabov Д. А., Shatagin Д. А., & Kiselev А. В. (2021). Estimation of Possibilities of Using Fractal Dimension and Information Entropy of Elastic Waves for Assessment of Damage to Steel 20 at Low Cycle Fatigue. Vestnik IzhGTU Imeni M.T. Kalashnikova, 24(3), 17–25. https://doi.org/10.22213/2413-1172-2021-3-17-25

Issue

Section

Articles