Features of Organization and Application of Active Balancing Cells with Extended Triggering Range of Shunt Circuits Keys in Ionistor Modules and Storage Devices of Joint-Stock Company “Elecond”

Authors

  • T. G. Chikurov JSC “Elecond”
  • M. V. Kibardin JSC “Elecond”
  • S. L. Shirokih JSC “Elecond”

DOI:

https://doi.org/10.22213/2413-1172-2021-3-68-77

Keywords:

ionistor, electric energy storage device, active balancing cell, overvoltage, shunt circuit

Abstract

The solution of the problem of the deficit of voltage level for the complete unlocking of MOSFETs used as keys in the shunt circuits of the cells of the active balancing of ionistor storage devices is given. In particular, a revision of the widespread two-pole circuit of the active balancing cell of the ionistor consisting of a comparison circuit and a shunt circuit with a key on the MOSFET is presented. The relevance of the problem is confirmed by the results of the analysis of the characteristics of the key MOSFETs at the level of the unlocking voltage of 2.5...2.7 V from the output of the comparison circuit. It is shown that this voltage is not sufficient to provide the channel resistance corresponding to a fully open transistor and the flow of the specified shunt currents in the entire range of external influencing factors (VVF), especially when exposed to a reduced temperature from plus 15 to minus 60 °C. The solution presented in the paper for finalizing the circuit of the active balancing cell is that voltage boost circuits are introduced between the comparison node and the shunt circuit. Their use allows you to increase the voltage at the gate of the key MOSFET by two, three, four, etc. times, which ensures the reliable operation of the shunt circuit key for different shunt currents. A special feature of the developed cell circuits is the three-pole switching, in which an additional output is connected to the adjacent ionistor cell. This method of switching on the developed active balancing cells provides doubling of the unlocking voltage on the gate and is sufficient for reliable unlocking of the key on the MOSFET at all shunt currents at the level of the charging voltage of the ionistors in the storage device 2.5...2.7 V. For shunt currents of the order of tens of amperes, it is shown that it is necessary to switch to a quasi-four-pole switching of the developed active balancing cell due to the separation of the supply power circuits (measuring circuits) of the comparison circuit and the power buses of the level-up circuit with the shunt circuit. The methods of switching on the developed cells that allow multiplying the unlocking voltage at the gate of the key MOSFET by three, four or more times are shown. The schemes and criteria for the necessity of applying such inclusion are given. Practical testing of the developed three-pole and quasi-four-pole active balancing cells, carried out on the ionistor NEE of JSC “Elecond”, showed satisfactory stability and performance under the influence of the entire set of VVF.

Author Biographies

T. G. Chikurov, JSC “Elecond”

PhD in Engineering

M. V. Kibardin, JSC “Elecond”

S. L. Shirokih, JSC “Elecond”

References

Ibanez F.M. Analyzing the Need for a Balancing System in Supercapacitor Energy Storage Systems. IEEE Trans Power Electron, 2018, vol. 33, no. 3, pp. 2162-2171.

Zheng Z., Wang K., Li Y., Liu H. and Chang F. A Modular-Cascaded Active-Balanced Storage System for Electric Transportation. IEEE Transportation Electrification Conf., 2018, pp. 1-6.

Матвеев А. И., Андреев С. А. Динамическая коммутация ионисторов в источниках питания элементов телеметрических систем // Аграрный научный журнал. 2019. № 1. С. 76-81.

Parvini Y., Siegel J.B., Stefanopoulou A.G. and Vahidi A. Supercapacitor electrical and thermal modeling identification and validation for a wide range of temperature and power applications. IEEE Transactions on Industrial Electronics, 2016, vol. 63, no. 3, pp. 1574-1585.

Степаненко В. П., Мальшаков И. Н. Перспективы применения в горной промышленности суперконденсаторных накопителей и возобновляемых источников энергии // Горный информационно-аналитический бюллетень (Научно-технический журнал). 2017. № 6. С. 153-163.

German R., Sari A., Briat O., Vinassa J.-M. and Venet P. Impact of voltage resets on supercapacitors aging. IEEE Trans. Ind. Electron., 2016, vol. 63, no. 12, pp. 7703-7711. DOI: 10.1109/TIE.2016.2594786.

Акулинин С. А., Наролина Т. С., Проскурина И. С. Вопросы надежности систем аккумуляции и хранения энергии на основе модулей суперконденсаторов // Энергия - ХХI век. 2018. № 2 (102). С. 17-32.

Keshmiri V., Westerberg D., Andersson Ersman P. A silicon-organic hybrid voltage equalizer for supercapacitor balancing. IEEE J. Emerg. Sel. Top. Circuits Syst., 2017, vol. 7, no. 1, ppP. 114-122.

Li H., Peng J., He J., Huang Z., Pan J. and Wang J. Synchronized Cell-Balancing Charging of Supercapacitors: A Consensus-Based Approach. IEEE Trans Industrial Electron, 2018, vol. 65, no. 10, pp. 8030-8040.

Особенности и применение ионисторов в электротехнике / С. Б. Бибиков, А. А. Мальцев, Б. В. Кошелев, А. В. Гелиев // Практическая силовая электроника. 2016. № 3. С. 44-55.

Shili S., Hijazi A., Sari A., Lin-Shi X. and Venet P. Balancing Circuit New Control for Supercapacitor Storage System Lifetime Maximization. IEEE Trans. Power Electron, 2017, vol. 32, no. 6, pp. 4939-4948.

Стародубцева В. А., Шкляев М. О. Активная балансировка суперконденсаторов // Интеллектуальные системы в производстве. 2017. Т. 15, № 1. С. 41-46. DOI: 10.22213/2410-9304-2017-1-41-46.

Martin Ibanez F., Idrisov I., Martin F. and Rujas A. Design Balancing Systems for Supercapacitors Based on Their Stochastic Model. IEEE Transactions on Energy Conversion, 2020, vol. 35, no. 2, pp. 733-745.

Кожушко Ю. В., Бондаренко А. Ф. Балансировка напряжения модульного накопителя энергии источника питания для контактной микросварки // Технология и конструирование в электронной аппаратуре. 2017. № 4-5. С. 15-23.

Проблема мониторинга и балансировки аккумуляторных батарей транспортных средств / А. П. Иншаков, Ю. Б. Федотов, С. С. Десяев, Д. В. Байков // Вестник мордовского университета. 2016. Т. 26, № 1. С. 40-49. DOI: 10.15507/0236-2910.026.201601.040-049.

Шаркович Р. П. Оптимизация устройства балансировки Li-ION аккумуляторной батареи для гибридных автомобилей и электромобилей // Системный анализ и прикладная информатика. 2016. № 4. С. 38-44 (in Russ.).

Tavakoli A. Control and analysis of a modular bridge for battery cell voltage balancing. IEEE Trans. Power Electron., 2018, vol. 33, no. 11, pp. 9722-9733.

Горбачев В., Кочемасов В., Хорев С. Ионисторы // Компоненты и технологии. 2020. № 7 (228). С. 10-15.

Амелин С. А., Амелина М. А. Модель МОП-транзистора для использования в ключевом режиме // Практическая силовая электроника. 2019. № 4 (76). С. 17-26.

Ловшенко И. Ю., Стемпицкий В. Р., Шандарович В. Т. Физико-топологическая модель полевого транзистора, учитывающая деградацию эксплуатационных характеристик при влиянии ионизирующего излучения // Инфокоммуникационные и радиоэлектронные технологии. 2019. Т. 2, № 4. С. 466-475.

Published

02.12.2021

How to Cite

Chikurov Т. Г., Kibardin М. В., & Shirokih С. Л. (2021). Features of Organization and Application of Active Balancing Cells with Extended Triggering Range of Shunt Circuits Keys in Ionistor Modules and Storage Devices of Joint-Stock Company “Elecond”. Vestnik IzhGTU Imeni M.T. Kalashnikova, 24(3), 68–77. https://doi.org/10.22213/2413-1172-2021-3-68-77

Issue

Section

Articles