Determination of the Shot Fractional Composition During Shock Hardening Methods Using Technical Vision

Authors

  • A. A. Pashkov Irkutsk National Research Technical University
  • O. V. Samoilenko Irkutsk National Research Technical University
  • A. A. Samoilenko Irkutsk National Research Technical University

DOI:

https://doi.org/10.22213/2413-1172-2022-4-10-17

Keywords:

hardening, technical vision, shot, fractional composition, form straightening, machine vision

Abstract

The main purpose of the article is development of method for determining the fractional composition of the shots during shot peen hardening. During peen hardening of aluminum aviation parts the deformation of spatial form of the part usually occurs due to the non-homogeneous compaction of their structural elements. Form straightening of hardened parts by methods of elastic-plastic deformation is unacceptable, as there may be a loss of hardening effect. A promising task is to predict the hardening process using finite element modeling, which will allow the use of preventive deformation in order to minimize the deformation. Also, finite element modeling of the shot hardening process can significantly reduce the costs associated with the manufacture of structurally similar samples when determining the predicted deformations of hardened parts. The proposed method allows the use of technical vision in the preparation of input data when modeling the hardening process, as well as to control the quality of the shot used in the hardening process. The study was carried out using machine vision equipment of the National Instruments company. This equipment is based on the NI Smart Camera, which allows interactive collection of video images and their processing. The measured sample is 500 grams of shot used in production for hardening aircraft parts. The proposed method consists obtaining of data array of the fractional composition using machine vision and analysis in a prepared C++ software module that displays the obtained data in the form of an Excel table. The obtained results were also verified using the equipment made on a 3D printer, which showed that the relative deviations of the calculated model data from experimental studies do not exceed 10%, which indicates sufficient accuracy of the developed methodology.

Author Biographies

A. A. Pashkov, Irkutsk National Research Technical University

PhD in Engineering

O. V. Samoilenko, Irkutsk National Research Technical University

Postgraduate

A. A. Samoilenko, Irkutsk National Research Technical University

Master’s Degree Student

References

Кравченко Г. Н. Обоснование эффективности восстановления усталостной долговечности поверхностно-упрочненных авиационных деталей повторным упрочнением дробью // Вестник машиностроения. 2019. № 12. С. 69-75.

Кавиев М. И., Трофимов В. Н. Дробеструйная обработка металла, применимая в военной технике // Альманах Пермского военного института войск национальной гвардии. 2021. № 4 (4). С. 177-182.

Starodubtseva D.A., Koltsov V.P., Vinh Le Tri. Grinding of aluminum alloy panels after shot peen forming on contact type. Materials Science and Engineering: IOP Conference Series, 2019, pp. 1-6. DOI: 10.1088/1757-899X/632/1/012109.

Koltsov V.P., Vinh Le Tri, Starodubtseva D.A. Determination of the allowance for grinding with flap wheels after shot peen forming. Materials Science and Engineering: IOP Conference Series, 2019, pp. 1-5. DOI: 10.1088/1757-899X/632/1/012096.

Экспериментальное определение зависимости степени покрытия при дробеударном формообразовании от режимов обработки /А. Е. Пашков, Ле Чи В., Нгуен Тхэ Х., В. В. Блудов, В. В. Тюньков // Вестник Иркутского государственного технического университета. 2019. Т. 23, № 6 (149). С. 1052-1060. DOI: 10.21285/1814-3520-2019-6-1052-1060.

Оценка процесса роста усталостных трещин влопастях винта вертолета / В. Е. Рогов, Л. А. Бохоева, В. Ю. Курохтин, А. Б. Балданов // Науковедение. 2017. Т. 9, № 2.С. 74.

Chiocca A., Frendo F., Bertini L. Residual stresses influence on the fatigue strength of structural components. Proc. Structural Integrity, 2022, vol. 38, pp. 447-456. DOI:10.1016/j.prostr.2022.03.045.

Weibull W. Fatigue Testing and Analysis of Results. Oxford:Pergamon Press, 1961.

Pashkov A.E., Malashchenko A.Y., Pashkov A.A. On Creating Digital Technologies for the Production of Large Aircraft Frame and Skin Parts.RUSSIAN METALLURGY (METALLY), 2021, no. 13, pp. 1777-1785. DOI: 10.1134/S003602952113022X.

Pashkov A.E., Makaruk A.A., Kitov A.K., Koltsov V.P. Patent RU 2618680 C1, 10.05.2017.

Pashkov A.E., Makaruk A.A., Minaev N.V. Automation methods for forming and rectifying stiffened parts with rolling machines.International Journal of Engineering and Technology, 2016, vol. 7, no. 6, pp. 2030-2037.

Машинная зачистка высокопрочных алюминиевых сплавов лепестковым кругом / Д. А. Стародубцева, В. П. Кольцов, Ле Чи Винь, Е. В. Тардыбаева // Вестник ИжГТУ имени М. Т. Калашникова. 2022. Т. 25, № 2. С. 40-50. DOI: 10.22213/2413-1172-2022- 2-40-50.

Мироненко В. В., Алексеев А. А. Исследование внедрения машинного зрения на производстве для контроля узлов при сборке агрегатов планера самолета // Кузнечно-штамповочное производство. Обработка материалов давлением. 2022. № 6. С. 35-40.

Федоренко В. Ю. Применение технологии машинного зрения в различных сферах жизни современного общества // Теория и практика современной науки. 2021. № 8 (74). С. 36-39.

Середа С. В. Применение машинного зрения в логистике // Sciences of Europe. 2021. № 65-1(65). С. 45-50. DOI: 10.24412/3162-2364-2021-65-1-45-50.

Дагмирзаев О. А. Изучаем язык программирования С++ // Colloquium-Journal. 2021. № 3-3 (90). С. 17-19. DOI: 10.24412/2520-2480-2021-390-17-19.

V’yukova N.I., Galatenko V.A., Samborskii S.V. Support for Parallel and Concurrent Programming in C++ Programming and Computer Software, 2018, vol. 44, no. 1, pp. 35-42. DOI: 10.1134/S0361768818010073.

Толкачев А. В., Волков Д. И.Параметры процесса дробеструйного упрочнения, определяющие результат обработки и требующие обязательного контроля // Упрочняющие технологии и покрытия. 2019. Т. 15, № 12 (180).С. 542-545.

Makaruk A.A., Pashkov A.A., Samoylenko O.V. Increasing the shape accuracy of the hardened parts of the frame by technological methods. IOP Conference Series: Materials Science and Engineering: 2019 International Conference on Innovations in Automotive and Aerospace Engineering, pp. 1-10. DOI: 10.1088/1757-899X/632/1/012100.

Кольцов В. П., Ле Чи В., Стародубцева Д. А., Ле Ч. В. К определению степени покрытия после дробеударной обработки // Вестник Иркутского государственного технического университета. 2017. Т. 21, № 11 (130). С. 45-52. DOI: 10.21285/1814-3520-2017-11-45-52.

Published

22.12.2022

How to Cite

Pashkov А. А., Samoilenko О. В., & Samoilenko А. А. (2022). Determination of the Shot Fractional Composition During Shock Hardening Methods Using Technical Vision. Vestnik IzhGTU Imeni M.T. Kalashnikova, 25(4), 10–17. https://doi.org/10.22213/2413-1172-2022-4-10-17

Issue

Section

Articles