PROCESS MINING: PRINCIPLES, CHARACTERISTICS AND IMPLEMENTATION POTENTIAL
DOI:
https://doi.org/10.22213/2618-9763-2021-3-34-40Keywords:
Process Mining, business management, business process, data analysis, information systems, event logsAbstract
Digital transformation is forcing companies to rethink their processes to meet current customer needs. Business Process Management (BPM) can provide a means to structure and address this change. However, most BPM approaches face limitations on the number of processes they can optimize at the same time, due to complexity and resource constraints. The article is devoted to data mining as a tool for modeling and improving the company's business processes. Process Mining is a collection of data-driven diagnostic and business process improvement methods that combine machine learning and BPM. Among the advantages of Process Mining is more efficient management decision making. The possibility of introducing Process Mining methods into the work of a telecommunications company for the automatic collection of information about business processes and building a map of business processes is analyzed. The use of Process Mining methods will allow a telecommunications company to optimize the work of its departments and increase customer satisfaction. In addition, the implementation of this system contributes to a better analysis of the results of the execution of business processes for providing access to the Internet. This will improve the regulations for these processes, control of their compliance and the procedure for making managerial decisions at a higher quality level.References
Rojas E., Capurro D. Characterization of drug use patterns using process mining and temporal abstraction digital phenotyping. Lect. Notes Bus. Inf. Process, 2019. P. 187-198.
Business process improvement with the ab-bpm methodology / S. Satyal, I. Weber, H. Y. Paik, C. Di Ciccio, J. Mendling. Inf. Sys., 2019. Vol. 84. P. 283-298.
Zerbino P., Stefanini A., Aloini D. Process Science in Action: A Literature Review on Process Mining in Business Management. Technological Forecasting and Social Change, 2021. Vol. 172. P. 121021.
Rojas E., Capurro D. Characterization of drug use patterns using process mining and temporal abstraction digital phenotyping. Lect. Notes Bus. Inf. Process, 2019. P. 187-198.
Zerbino P., Stefanini A., Aloini D. Process Science in Action: A Literature Review on Process Mining in Business Management. Technological Forecasting and Social Change, 2021. Vol. 172. P. 121021.
Van der Aalst W. Process Mining. Data Science in Action, 2016.
Understanding Process Mining for Data-Driven Optimization of Order Processing / G. Schuh, A. Gützlaff, S. Cremer, M. Schopen // Procedia Manufacturing, 2020. Vol. 45. Pp. 417-422.
Абдулаев И. Повышение операционной эффективности организации с применением инструментов и методов Process Mining // Реальная экономика. 2019. № 4 (60). С. 3-10.
Van der Aalst W. Process Mining Manifesto // Business Information Processing. 2012. Vol. 99. Pp. 169-194.
Understanding Process Mining for Data-Driven Optimization of Order Processing / G. Schuh, A. Gützlaff, S. Cremer, M. Schopen // Procedia Manufacturing, 2020. Vol. 45. Pp. 417-422.
Zheng Q., Li Y., Cao J. Application of data mining technology in alarm analysis of communication network. Computer Communications. 2020. Vol. 163. Pp. 84-90.
Абдулаев И. Указ. соч.
Фролов Ф. А. Повышение эффективности управления бизнес-процессами с использованием технологии Process Mining // Сравнительная характеристика современного инструментария для моделирования бизнес-процессов компании. 2019. Т. 3, № 1 (28). С. 983-992.
Информационно-технологические решения в экономике и управлении : монография / Л. И. Зинина, Е. А. Сысоева, С. В. Бажанова [и др.]. Саранск : Изд-во Мордов. ун-та, 2020. 148 с.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Закурдаева Ж.Е., Бикеева М.В.
This work is licensed under a Creative Commons Attribution 4.0 International License.