ASSESSMENT OF INTERTEMPORAL SYSTEMATIC RISK ON THE EXAMPLE OF THE RUSSIAN STOCK MARKET

Authors

  • S. P. Syrygin Kalashnikov Izhevsk State Technical University
  • E. A. Volokhin Kalashnikov Izhevsk State Technical University

DOI:

https://doi.org/10.22213/2618-9763-2024-4-52-63

Keywords:

GARCH model, stock market, correlation, volatility, Generalized autoregressive conditional heteroskedasticity, dynamic beta, systematic risk

Abstract

The article is dedicated to the study of systematic risk using the Russian stock market as an example. It proposes assessing risk based on intertemporal dynamic beta using modern multivariate models such as DCC-GARCH, GJR-DCC-GARCH, and ADCC-GARCH. The analysis relies on daily returns of the MSCI World index, the main index, and eight sectoral indices of the Moscow Exchange from December 13, 2019, to June 5, 2024. The primary data consisted of daily return time series of the MSCI World Index, the main index, and eight sectoral indices of the Moscow Exchange over the period from December 13, 2019, to June 5, 2024. GARCH model construction for the return series revealed heteroscedasticity, stationarity, and deviations from a normal distribution. Based on a comparison of models with normal and Student's t-distribution in terms of predictive accuracy using cross-validation and the Diebold-Mariano test, the ADCC-GARCH model with a normal distribution was identified as providing the most accurate forecast. Through comparison of the Akaike information criterion and log-likelihood among models, GJR-DCC-GARCH was determined to be the most accurate. Analysis of the ADCC-GARCH model indicated that transport and financial indices are most susceptible to recent shocks and negative news, while the telecommunications sector is the least sensitive. The ADCC-GARCH model found that the electricity sector index has the highest conditional correlation sensitivity to the global market, while the transport index exhibits long-term correlation “memory.” Based on the descriptive statistics of Moscow Exchange beta indices and the Jarque-Bera test, the oil and gas index showed the least extreme fluctuations. Visual analysis of MSCI World and Moscow Exchange index returns revealed a declining trend in correlation between the global and Russian stock markets, indicating a deglobalization of the Russian economy.

Author Biographies

S. P. Syrygin, Kalashnikov Izhevsk State Technical University

PhD in Engineering

E. A. Volokhin, Kalashnikov Izhevsk State Technical University

Master’s Degree Student

References

Frecautan I. Is the Russian Green Bond Market Strong Enough to Hedge in the Crisis Times? // Journal of Corporate Finance Research. 2024. Vol. 18, no. 2. Pp. 26-41. DOI: 10.17323/j.jcfr.2073-0438.18.2.2024.26-41

J. Guyomey A. Zaitsev Development of Instrumental Approaches to Forecasting the Volatility of the Return of Financial Assets // Sustainable development and engineering economics. 2023. Vol. 2. Pp. 8-22. DOI: 10.48554/SDEE.2023.2.1

Ahmad shah A. Do gold and the US dollar diversify global sectoral risk? Evidence from connectedness and dynamic conditional correlation measures // The Journal of Economic Asymmetries. 2023. Vol. 28. P. 00304. DOI: 10.1016/j.jeca.2023.e00304

Bossman A. EU sectoral stocks amid geopolitical risk, market sentiment, and crude oil implied volatility: An assymetric analysis of the Russia-Ukraine tensions // Resources Policy. 2023. Vol. 82. Pp. 103515-103515. DOI: 10.1016/j.resourpol.2023.103515

Bauwens L., Yongdeng Xu. DCC- and DECO-HEAVY: Multivariate GARCH models based on realized variances and correlations // International Journal of Forecasting. 2023. Vol. 39, Issue 2. Pp. 938-955. DOI: 10.1016/j.ijforecast.2022.03.005

Llorens-Terrazas J., Brownlees С. Projected Dynamic Conditional Correlations // International Journal Forecasting. 2023. Vol. 39, issue 4. Pp. 1761-1776. DOI: 10.1016/j.ijforecast.2022.06.003

Jarjour R., Kung-Sik Chan. Dynamic conditional angular correlation // Journal of Econometrics. 2020. Vol. 216, Issue 1. Pp. 137-150. DOI: 10.1016/j.jeconom.2020.01.010

Hanyu Zh., Dufour A. Managing portfolio risk during crisis times: a dynamic conditional correlation perspective // The Quarterly Review of Economics and Finance. 2024. Vol. 94. P. 241. DOI: 10.1016/j.qref.2024.02.002

Fiszeder P. Robust estimation of the range-based GARCH model: Forecasting volatility, value at risk and expected shortfall of cryptocurrencies // Economic Modelling. 2024. Vol. 141. P. 106887. DOI: 10.1016/j.econmod.2024.106887

Глебова А. Г., Ковалева А. А. Прогнозирование волатильности российского биржевого рынка акций в условиях международных экономических санкций // Финансы: теория и практика. 2024. No. 28 (1). C. 20-29. DOI: 10.26794/2587-5671-2024-28-1-20-29

Трифонов Ю. С., Потанин Б. С. Многомерная асимметричная GARCH-модель с динамической корреляционной матрицей // Финансы: теория и практика. 2022. No. 26 (2). С. 204-218. DOI: 10.26794/2587-5671-2022-26-2-204-2

Трифонов Ю. С., Потанин Б. С. Многомерная асимметричная GARCH-модель с динамической корреляционной матрицей // Финансы: теория и практика. 2022. No. 26 (2). С. 204-218. DOI: 10.26794/2587-5671-2022-26-2-204-2

Mohammed A. E. A., Mwambi H., Omolo B. Time-Varying Correlations between JSE.JO Stock Market and its Partners Using Symmetric and Asymmetric Dynamic Conditional Correlation Models // Stats. 2024. Vol. 7. Pp. 761-776. DOI: 10.3390/stats7030046

Dynamic Conditional Correlation and Volatility Spillover between Conventional and Islamic Stock Markets: Evidence from Developed and Emerging Countries / M. Sahabuddin, Md. A. Islam, M. I. Tabash, Md. K. Alam, L. N. Daniel, I. I. Mostafa // Journal of Risk and Financial Management. 2023. Vol. 16, no. 2. Pp. 1-19. DOI: 10.3390/jrfm16020111

Bossman A. EU sectoral stocks amid geopolitical risk, market sentiment, and crude oil implied volatility: An assymetric analysis of the Russia-Ukraine tensions // Resources Policy. 2023. Vol. 82. Pp. 103515-103515. DOI: 10.1016/j.resourpol.2023.103515

Hafner Ch. M. A dynamic conditional score model for the log correlation matrix // Journal of Econometrics. December. 2023. Vol. 237, Issue 2, Part B., P. 105176. DOI: 10.1016/j.qref.2024.02.002

Fiszeder P., Fatdzinski M., Molnar P. Modeling and forecasting dynamic conditional correlations with opening, high, low, and closing prices // Journal of Empirical Finance. 2023. Vol. 70. Pp. 308-321. DOI: 10.1016/j.jempfin.2022.12.007

Alshammari S., Obeid H. Analyzing commodity futures and stock market indices: Hedging strategies using asymmetric dynamic conditional correlation models // Finance Research Letter. 2023. Vol. 56. P. 104081. DOI: 10.1016/j.frl.2023.104081

Institutional investor attention and stock market volatility and liquidity: international evidence | E. Ouadghiri, E. Erragragui, J. Jaballah and J. Peillex // Applied Economics. 2022. Vol. 54, issue 42. Pp. 20-29. DOI: 10.1007/s10479-021-04042-y

Fang Yi, Zhiquan Shao. The Russia-Ukraine conflict and volatility risk of commodity markets // Finance Research Letters. 2022. Vol. 50. P. 103264. DOI:10.1016/j.frl.2022.103264

Qunxing P., Xiaowen M., Tianqing G. Modeling dynamic conditional correlations with leverage effects and volatility spillover effects: Evidence from the Chinese and US stock markets affected by the recent trade friction // The North American Journal of Economics and Finance. 2022. Vol. 59. P. 101591 DOI: 10.1016/j.najef.2021.101591

Published

28.12.2024

How to Cite

Syrygin С. П., & Volokhin Е. А. (2024). ASSESSMENT OF INTERTEMPORAL SYSTEMATIC RISK ON THE EXAMPLE OF THE RUSSIAN STOCK MARKET. Social’no-Ekonomiceskoe Upravlenie: Teoria I Praktika, 20(4), 52–63. https://doi.org/10.22213/2618-9763-2024-4-52-63

Issue

Section

Articles