THE ANALISYS OF NEURAL MACHINE TRANSLATION SYSTEMS USING AUTOMATED MACHINE TRANSLATION EVALUATION METRICS

Authors

  • E. S. Oshanova Kalashnikov Izhevsk State Technical University
  • D. A. Ponosova Municipal budgetary educational institution “Secondary school no. 8”

DOI:

https://doi.org/10.22213/2618-9763-2024-4-106-116

Keywords:

reference, neural machine translation systems, automated evaluation metrics, neural machine translation

Abstract

This paper introduces current-day automated metrics for neural machine translation evaluation and discusses two ways of result evaluation, which include evaluation using specific automated metrics as well as evaluation by an expert translator. Neural machine translation systems were tested for analysis and evaluation purposes. Google Translate and DeepL Translate systems, which apply a neural network approach, are presented as candidates. The following metrics were considered for evaluation: METEOR as a traditional reference-based metric, COMET as a neural reference-based metric, and COMET-kiwi as a neural reference-free metric. It can be noted that even if these metrics are automated, there is a huge human impact in this automation. Even models with a neural network approach are trained on data provided by humans, as today it is impossible to get rid of reference translations or quality estimations made by experts. Metrics allow to understand and better investigate machine translation, its features and limitations, as well as to determine the direction of its development. As a part of the analysis, a piece of source text was selected for translation, translated into the target languages using selected neural machine translation systems to get candidate translations, and then a reference translation was specified for each of them. The results of the metrics evaluation were helpful for understanding how close machine translation is to human translation, and also helped to learn more about the current stage of machine translation systems development. Expert evaluation helped to understand how well such systems are doing in terms of translation performance.

Author Biographies

E. S. Oshanova, Kalashnikov Izhevsk State Technical University

Candidate of Philological Sciences, Associate Professor

D. A. Ponosova, Municipal budgetary educational institution “Secondary school no. 8”

English teacher

References

Kaku M. Die Physik der Zukunft. Unser Leben in 100 Jahren. Reinbek bei Hamburg: Rowohlt Verlag, 2012. 602 s.

Каку М. Физика будущего / пер. Наталья Лисова ; ред. Мария Миловидова. Москва : Альпина нон-фикшн, 2012. 584 с. ISBN 978-5-91671-164-6

Kaku M. Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100. NewYork :Doubleday, 2011. 416 p.

Эволюция метрик качества машинного перевода. Часть 3 // Хабр : сайт. URL: https://habr.com/ru/articles/758522/(дата обращения: 16.04.2024).

Эволюция метрик качества машинного перевода. Часть 3 // Хабр : сайт. URL: https://habr.com/ru/articles/758522/(дата обращения: 16.04.2024).

Эволюция метрик качества машинного перевода. Часть 2 // Хабр : сайт. URL: https://habr.com/ru/articles/748496/(дата обращения: 15.04.2024).

Эволюция метрик качества машинного перевода. Часть 1 // Хабр : сайт. URL: https://habr.com/ru/articles/745642/(дата обращения: 13.04.2024).

Улиткин И. А. Автоматическая оценка качества машинного перевода научного текста: 5 лет спустя // Вестник Московского государственного областного университета. Серия: Лингвистика. 2022. № 1. С. 47-59. DOI: 10.18384/2310-712X-2022-1-47-59. EDN: GTAUUM

Hutchins J. Current commercial machine translation systems and computer-based translation tools: System types and their uses // International Journal of Translation. 2005. Vol. 17 (1-2). Pp. 5-38.

Quah C. K. Translation and Technology. Basingstoke : Palgrave, 2006. 221 p.

Прикладная и компьютерная лингвистика : монография / ред. О. В. Митренина, И. С. Николаев, Т. М. Ландо. Москва : URSS, 2016. 320 с. С. 156-189. EDN: WEYYGT

Раренко М. Б. Машинный перевод: от перевода «по правилам» к нейронному переводу (обзор) // Социальные и гуманитарные науки. Отечественная и зарубежная литература. Сер. 6. Языкознание: Реферативный журнал. 2021. № 3. С. 70-79. DOI: 10.31249/ling/2021.03.05. EDN: ZSKAVN

Gross A. Limitations of Computers as Translation Tools // Computers and Translation. London : Routledge, 1992. Pp. 96-130.

Austermühl F. Electronic Tools for Translators. Manchester : St. Jerome, 2001. 202 p.

Language and Machines: Computers in Translation and Linguistics: a report by the Automatic Language Processing Advisory Committee, National Academy of Science /j. R. Pierce, J. B. Carroll, E. P. Hamp, D. G. Hays [et al.]. Washington, DC : The National Academic Press, 1966. 138 p.

Bahdanau D., Cho K., Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate // arXiv, 2016. URL: arxiv.org/pdf/1409.0473 (дата обращения: 20.04.2024).

A Study of Translation Edit Rate with Targeted Human Annotation / M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul // AMTA. 2006. URL: https://aclanthology.org/2006.amta-papers.25 (дата обращения: 13.04.2024).

Улиткин И. А. Автоматическая оценка качества машинного перевода научно-технического текста // Вестник Московского государственного областного университета. Серия: Лингвистика. 2016. № 4. С. 174-182. DOI: 10.18384/2310-712X-2016-4-174-182. EDN: WPZGQP

Дьяченко И. Н., Матыченко Ю. В. Нейронный машинный перевод: преимущества, сложности, перспективы // Язык и литература в поликультурном пространстве. 2020. № 6. С. 28-33. EDN: KOINQX

Published

28.12.2024

How to Cite

Oshanova Е. С., & Ponosova Д. А. (2024). THE ANALISYS OF NEURAL MACHINE TRANSLATION SYSTEMS USING AUTOMATED MACHINE TRANSLATION EVALUATION METRICS. Social’no-Ekonomiceskoe Upravlenie: Teoria I Praktika, 20(4), 106–116. https://doi.org/10.22213/2618-9763-2024-4-106-116

Issue

Section

Articles