USING NEURAL NETWORKS FOR HR: POSSIBILITIES, PROSPECTS, LIMITATIONS

Authors

  • R. A. Galiakhmetov Kalashnikov Izhevsk State Technical University
  • M. N. Shmyrev Tomsk State University

DOI:

https://doi.org/10.22213/2618-9763-2025-2-20-24

Keywords:

industrial engineering, confidentiality, personnel analysis, recruitment, hr, artificial intelligence, neural networks

Abstract

The article systematizes contemporary approaches to integrating neural networks and artificial-intelligence (AI) tools across all core human-resource management (HR) processes. Drawing on BCG industry reports and specialized studies, it demonstrates that neural networks accelerate recruitment through automatic résumé screening, candidate ranking and round-the-clock chatbot support, thereby reducing recruiter workload by up to ten percent and shortening average vacancy-closure time by roughly forty percent. The paper outlines analytical models that predict turnover risk and help design personalized career trajectories. Adaptation functions include automatic generation of check-lists, early detection of burnout signs and development of individual learning programmes. Confidentiality challenges are analysed, notably potential data leaks and model “hallucinations” that necessitate multi-level fact-checking. The practical value of hybrid architectures that combine on-premise and cloud neural networks to balance security and cost efficiency is underlined. Separate attention is given to the growth of prompt-engineering skills among HR professionals, enabling precise task formulation and mitigating legal risks. Examples are provided of chatbots conducting brief preliminary interviews and clarifying candidate expectations. The article notes that analytical modules can aggregate employee feedback and generate dynamic mood reports at the team level. The authors emphasize that successful AI integration requires continuous data-quality monitoring and regular algorithm updates. The findings confirm the high efficiency and future relevance of neural-network integration into HR processes, provided that information-security requirements and ethical standards are strictly observed.

Author Biographies

R. A. Galiakhmetov, Kalashnikov Izhevsk State Technical University

Doctor of Economics, Professor

M. N. Shmyrev, Tomsk State University

Master’s Degree Student

References

Тагансахедов Ш. Т., Гельдимаммедова М. Т., Шаларова А. Х. Конфиденциальность данных пользователей в общих сетях // Символ науки. 2024. № 9-1-2. С. 67-69. EDN: YWUPLH

Как ИИ преобразовывает рынок труда: исчезающие профессии и работы будущего. URL: https://habr.com/ru/articles/875186 (дата обращения: 14.03.2025).

Панова Е. А., Опарина Н. Н. Цифровые технологии в подборе и отборе кандидатов: от ручных операций к формированию заданий // Управление персоналом и интеллектуальными ресурсами в России. 2023. № 5 (68). С. 12-19. DOI: 10.12737/2305-7807-2023-12-5-12-19. EDN: GUSAMJ

Доброчинский В. Б. Искусственный интеллект в рекрутменте: проблема анализа экономической эффективности // Международный журнал гуманитарных и естественных наук. 2024. Т. 9-2 (96). С. 269-272.

BCG. Transforming Human Resources Using Generative AI. 2023 / By Julie Bedard, Katie Lavoie, Renee Laverdiere, Allison Bailey, Vinciane Beauchene, and Jens Baier. Article August 24, 2023. URL: https://www.bcg.com/publications/2023/transforming-human-resources-using-generative-ai (дата обращения: 14.03.2025).

BCG. Transforming Human Resources Using Generative AI. 2023 / By Julie Bedard, Katie Lavoie, Renee Laverdiere, Allison Bailey, Vinciane Beauchene, and Jens Baier. Article August 24, 2023. URL: https://www.bcg.com/publications/2023/transforming-human-resources-using-generative-ai (дата обращения: 14.03.2025).

BCG. Transforming Human Resources Using Generative AI. 2023 / By Julie Bedard, Katie Lavoie, Renee Laverdiere, Allison Bailey, Vinciane Beauchene, and Jens Baier. Article August 24, 2023. URL: https://www.bcg.com/publications/2023/transforming-human-resources-using-generative-ai (дата обращения: 14.03.2025).

Климчук Т. В., Уваров М. А. Искусственный интеллект в сфере управления персоналом // Вестник науки и образования. 2020. № 13 (91). Ч. 2. С. 31-35. EDN: YWUPLH

Матыцина Н. П., Хасаншин Н. Р. Искусственный интеллект в управлении: новые возможности и вызовы // Символ науки. 2024. № 6-2. C. 92-94.

Published

06.07.2025

How to Cite

Galiakhmetov Р. А., & Shmyrev М. Н. (2025). USING NEURAL NETWORKS FOR HR: POSSIBILITIES, PROSPECTS, LIMITATIONS. Social’no-Ekonomiceskoe Upravlenie: Teoria I Praktika, 21(2), 20–24. https://doi.org/10.22213/2618-9763-2025-2-20-24

Issue

Section

Articles