Methods and techniques for cognitive adaptation of specialized socio-economic texts for target audiences: review and prospects for the development of information systems

Authors

  • E. V. Isaeva Perm State University
  • P. S. Ermakova National University of Science and Technology MISIS

DOI:

https://doi.org/10.22213/2618-9763-2025-3-92-103

Keywords:

T5, Bart, text simplification, text generation, automated text processing, information perception, cognitive adaptation of text, natural language processing, adaptation of socio-economic texts

Abstract

The article discusses the problem of cognitive adaptation of specialised socio-economic texts for the target audience. To solve the problem, an interdisciplinary approach was chosen at the intersection of cognitive-discursive linguistics, terminology, information technology, computational linguistics, and natural language processing. We provide a systematic description of methods for automating the process of text adaptation and creating complex information systems that generate secondary texts optimised for perception by a specific group of recipients. Particular attention is paid to issues of cognitive load and conceptual density of the text, as well as the semantic invariance of the secondary text. We compare methods and justify their effectiveness for different stages of designing an information system that automates this process. We examine tools for statistical assessment of text complexity, target audience classification, general text simplification, and terminology adaptation, implemented in the Python programming language. As an illustration of the proposed solution, an example is given of the semi-automatic (using a neural network with subsequent expert correction) conversion of a fragment of a specialized socio-economic text from a scientific article. The results propose a flowchart of the prototype of the information system under development. The presented study can serve as a basis for the development of an information system that can be useful to state and municipal authorities for improving communication with citizens, to the media for increasing the readability of publications and audience engagement, to educational institutions for teaching complex socio-economic disciplines, businesses to explain the financial, legal, and social aspects of their activities, etc. The proposed approach is universal and can be scaled to other subject areas.

Author Biographies

E. V. Isaeva, Perm State University

Candidate of Philological Science, Associate Professor

P. S. Ermakova, National University of Science and Technology MISIS

Student

References

Blinova O., Tarasov N. A hybrid model of complexity estimation: Evidence from Russian legal texts // Front ArtifIntell. 2022. Vol. 5. DOI: 10.3389/frai.2022.1008530

RoBERTa: A Robustly Optimized BERT Pretraining Approach / Y. Liu [et al.]. 2019. URL: https://arxiv.org/pdf/1907.11692 (дата обращения: 11.07.2025).

Rajabi Z., Valavi M. R., Hourali M. A Context-Based Disambiguation Model for Sentiment Concepts Using a Bag-of-Concepts Approach // Cognit Comput. 2020. Vol. 12, no. 6. Pp. 1299-1312. DOI: 10.48550/arXiv.2008.03020

Sequence-to-Sequence Models for Automated Text Simplification / R. M. Botarleanu [et al.] // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, 2020. Vol. 12164 LNAI. Pp. 31-36. DOI: 10.1007/978-3-030-52240-7_6

FastText.zip: Compressing text classification models / A. Joulin [et al.]. 2016. DOI: https://doi.org/10.48550/arXiv.1612.03651

Improving access to COVID-19 information by ensuring the readability of government websites / T. Serry [et al.] // Health Promotion Journal of Australia. John Wiley and Sons Inc. 2023. Vol. 34, no. 2. Pp. 595-602. DOI: 10.1002/hpja.610

Kostadimas D., Kermanidis K. L., Andronikos T. Exploring the Effectiveness of Shallow and L2 Learner-Suitable Textual Features for Supervised and Unsupervised Sentence-Based Readability Assessment // Applied Sciences. 2024. Vol. 14, no. 17. Pp. 7997. DOI: 10.3390/app14177997

Implementing Deep Learning-Based Approaches for Article Summarization in Indian Languages / R. Tangsali [et al.] // CEUR Workshop Proc. CEUR-WS, 2022. Vol. 3395. Pp. 449-453. URL: https://ceur-ws.org/Vol-3395/T6-10.pdf (дата обращения: 11.07.2025).

A Method to Automate the Discharge Summary Hospital Course for Neurology Patients / V. C. Hartman [et al.] // Journal of the American Medical Informatics Association. Oxford University Press, 2023. Vol. 30, no. 12. Pp. 1995-2003. DOI: https://doi.org/10.1093/jamia/ocad177

Chernyshev D., Dobrov B. Investigating the Pre-Training Bias in Low-Resource Abstractive Summarization // IEEE Access. 2024. Vol. 12. Pp. 47219-47230. DOI: 10.1109/ACCESS.2024.3379139

Васильев Д. Д., Пятаева А. В. Использование языковых моделей T5 для задачи упрощения текста // Программные продукты и системы. 2023. Т. 20. С. 228-236. DOI: 10.15827/0236-235X.142.228-236. EDN: AYXLBW

Умарова Д. З. Принципы отбора и адаптации текстов по специальности // Бюллетень науки и практики. 2023. Т. 9, № 11. С. 371-375. DOI: 10.33619/2414-2948/96/48/. EDN: CWVNCC

Anggawijaya M. H., Adika D. Enhancing Target Text Comprehension for Lay Audience through Paraphrasing // JurnalHumaya: Jurnal Hukum, Humaniora, Masyarakat, dan Budaya. UniversitasTerbuka, 2023. Vol. 3, no. 1. Pp. 1-14. DOI: 10.33830/humaya.v3i1.4282

Vlasenko N. I., Tolmacheva I. А. Translation features of technical texts (examples of economic texts) // Russian Linguistic Bulletin. 2020. No 4 (24). Pp. 126-128. DOI: 10.18454/RULB.2020.24.4.20. EDN: WKYBSJ

Хунцзюнь Д. Роль когнитивной лингвистики в понимании процессов восприятия и интерпретации текста при переводе // Управление образованием: теория и практика. 2024. Т. 14, № 1-2. С. 265-273. DOI: 10.25726/c3852-9347-4601-eво

Imperial J. M. BERT Embeddings for Automatic Readability Assessment // ACL Anthology. 2021. Pp. 611-618. URL: https://aclanthology.org/2021.ranlp-1.69/(дата обращения: 11.07.2025).

Speer R., Havasi C. ConceptNet 5: A Large Semantic Network for Relational Knowledge. Springer, Berlin, Heidelberg, 2013. Pp. 161-176. DOI: 10.1007/978-3-642-35085-6_6

Демьянков В. З. Приемлемость, уместность и адаптация текста // Вопросы когнитивной лингвистики. 2019. № 4. С. 4-19. DOI: 10.20916/1812-3228-2019-4-9-19. EDN: TXHKWL

Ионова С. В. Принципы интердискурсивной адаптации текстов // Научный вестник Воронежского государственного архитектурно-строительного университета. Серия: Современные лингвистические и методико-дидактические исследования. 2006. № 5. С. 50-59.

Демьянков В. З. Приемлемость, уместность и адаптация текста // Вопросы когнитивной лингвистики. 2019. № 4. С. 4-19. DOI:10.20916/1812-3228-2019-4-9-19. EDN: TXHKWL

Хафизова Э. И. Адаптация сложности текстов и текстовых заданий // Молодой ученый. 2021. № 354. С. 266-268.

Published

06.10.2025

How to Cite

Isaeva Е. В., & Ermakova П. С. (2025). Methods and techniques for cognitive adaptation of specialized socio-economic texts for target audiences: review and prospects for the development of information systems. Social’no-Ekonomiceskoe Upravlenie: Teoria I Praktika, 21(3), 92–103. https://doi.org/10.22213/2618-9763-2025-3-92-103

Issue

Section

Articles