Methods and techniques for cognitive adaptation of specialized socio-economic texts for target audiences: review and prospects for the development of information systems
DOI:
https://doi.org/10.22213/2618-9763-2025-3-92-103Keywords:
T5, Bart, text simplification, text generation, automated text processing, information perception, cognitive adaptation of text, natural language processing, adaptation of socio-economic textsAbstract
The article discusses the problem of cognitive adaptation of specialised socio-economic texts for the target audience. To solve the problem, an interdisciplinary approach was chosen at the intersection of cognitive-discursive linguistics, terminology, information technology, computational linguistics, and natural language processing. We provide a systematic description of methods for automating the process of text adaptation and creating complex information systems that generate secondary texts optimised for perception by a specific group of recipients. Particular attention is paid to issues of cognitive load and conceptual density of the text, as well as the semantic invariance of the secondary text. We compare methods and justify their effectiveness for different stages of designing an information system that automates this process. We examine tools for statistical assessment of text complexity, target audience classification, general text simplification, and terminology adaptation, implemented in the Python programming language. As an illustration of the proposed solution, an example is given of the semi-automatic (using a neural network with subsequent expert correction) conversion of a fragment of a specialized socio-economic text from a scientific article. The results propose a flowchart of the prototype of the information system under development. The presented study can serve as a basis for the development of an information system that can be useful to state and municipal authorities for improving communication with citizens, to the media for increasing the readability of publications and audience engagement, to educational institutions for teaching complex socio-economic disciplines, businesses to explain the financial, legal, and social aspects of their activities, etc. The proposed approach is universal and can be scaled to other subject areas.References
Blinova O., Tarasov N. A hybrid model of complexity estimation: Evidence from Russian legal texts // Front ArtifIntell. 2022. Vol. 5. DOI: 10.3389/frai.2022.1008530
RoBERTa: A Robustly Optimized BERT Pretraining Approach / Y. Liu [et al.]. 2019. URL: https://arxiv.org/pdf/1907.11692 (дата обращения: 11.07.2025).
Rajabi Z., Valavi M. R., Hourali M. A Context-Based Disambiguation Model for Sentiment Concepts Using a Bag-of-Concepts Approach // Cognit Comput. 2020. Vol. 12, no. 6. Pp. 1299-1312. DOI: 10.48550/arXiv.2008.03020
Sequence-to-Sequence Models for Automated Text Simplification / R. M. Botarleanu [et al.] // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, 2020. Vol. 12164 LNAI. Pp. 31-36. DOI: 10.1007/978-3-030-52240-7_6
FastText.zip: Compressing text classification models / A. Joulin [et al.]. 2016. DOI: https://doi.org/10.48550/arXiv.1612.03651
Improving access to COVID-19 information by ensuring the readability of government websites / T. Serry [et al.] // Health Promotion Journal of Australia. John Wiley and Sons Inc. 2023. Vol. 34, no. 2. Pp. 595-602. DOI: 10.1002/hpja.610
Kostadimas D., Kermanidis K. L., Andronikos T. Exploring the Effectiveness of Shallow and L2 Learner-Suitable Textual Features for Supervised and Unsupervised Sentence-Based Readability Assessment // Applied Sciences. 2024. Vol. 14, no. 17. Pp. 7997. DOI: 10.3390/app14177997
Implementing Deep Learning-Based Approaches for Article Summarization in Indian Languages / R. Tangsali [et al.] // CEUR Workshop Proc. CEUR-WS, 2022. Vol. 3395. Pp. 449-453. URL: https://ceur-ws.org/Vol-3395/T6-10.pdf (дата обращения: 11.07.2025).
A Method to Automate the Discharge Summary Hospital Course for Neurology Patients / V. C. Hartman [et al.] // Journal of the American Medical Informatics Association. Oxford University Press, 2023. Vol. 30, no. 12. Pp. 1995-2003. DOI: https://doi.org/10.1093/jamia/ocad177
Chernyshev D., Dobrov B. Investigating the Pre-Training Bias in Low-Resource Abstractive Summarization // IEEE Access. 2024. Vol. 12. Pp. 47219-47230. DOI: 10.1109/ACCESS.2024.3379139
Васильев Д. Д., Пятаева А. В. Использование языковых моделей T5 для задачи упрощения текста // Программные продукты и системы. 2023. Т. 20. С. 228-236. DOI: 10.15827/0236-235X.142.228-236. EDN: AYXLBW
Умарова Д. З. Принципы отбора и адаптации текстов по специальности // Бюллетень науки и практики. 2023. Т. 9, № 11. С. 371-375. DOI: 10.33619/2414-2948/96/48/. EDN: CWVNCC
Anggawijaya M. H., Adika D. Enhancing Target Text Comprehension for Lay Audience through Paraphrasing // JurnalHumaya: Jurnal Hukum, Humaniora, Masyarakat, dan Budaya. UniversitasTerbuka, 2023. Vol. 3, no. 1. Pp. 1-14. DOI: 10.33830/humaya.v3i1.4282
Vlasenko N. I., Tolmacheva I. А. Translation features of technical texts (examples of economic texts) // Russian Linguistic Bulletin. 2020. No 4 (24). Pp. 126-128. DOI: 10.18454/RULB.2020.24.4.20. EDN: WKYBSJ
Хунцзюнь Д. Роль когнитивной лингвистики в понимании процессов восприятия и интерпретации текста при переводе // Управление образованием: теория и практика. 2024. Т. 14, № 1-2. С. 265-273. DOI: 10.25726/c3852-9347-4601-eво
Imperial J. M. BERT Embeddings for Automatic Readability Assessment // ACL Anthology. 2021. Pp. 611-618. URL: https://aclanthology.org/2021.ranlp-1.69/(дата обращения: 11.07.2025).
Speer R., Havasi C. ConceptNet 5: A Large Semantic Network for Relational Knowledge. Springer, Berlin, Heidelberg, 2013. Pp. 161-176. DOI: 10.1007/978-3-642-35085-6_6
Демьянков В. З. Приемлемость, уместность и адаптация текста // Вопросы когнитивной лингвистики. 2019. № 4. С. 4-19. DOI: 10.20916/1812-3228-2019-4-9-19. EDN: TXHKWL
Ионова С. В. Принципы интердискурсивной адаптации текстов // Научный вестник Воронежского государственного архитектурно-строительного университета. Серия: Современные лингвистические и методико-дидактические исследования. 2006. № 5. С. 50-59.
Демьянков В. З. Приемлемость, уместность и адаптация текста // Вопросы когнитивной лингвистики. 2019. № 4. С. 4-19. DOI:10.20916/1812-3228-2019-4-9-19. EDN: TXHKWL
Хафизова Э. И. Адаптация сложности текстов и текстовых заданий // Молодой ученый. 2021. № 354. С. 266-268.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Е В Исаева, П С Ермакова

This work is licensed under a Creative Commons Attribution 4.0 International License.